The ^{12}C/^{13}C ratio is a significant indicator of nucleosynthesis and mixing processes during hydrogen burning in stars. Its value mainly depends on the relative rates of the ^{12}C(p,γ)^{13}N and ^{13}C(p,γ)^{14}N reactions. Both reactions have been studied at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Italy down to the lowest energies to date (E_{c.m.}=60  keV) reaching for the first time the high energy tail of hydrogen burning in the shell of giant stars. Our cross sections, obtained with both prompt γ-ray detection and activation measurements, are the most precise to date with overall systematic uncertainties of 7%-8%. Compared with most of the literature, our results are systematically lower, by 25% for the ^{12}C(p,γ)^{13}N reaction and by 30% for ^{13}C(p,γ)^{14}N. We provide the most precise value up to now of 3.6±0.4 in the 20-140 MK range for the lowest possible ^{12}C/^{13}C ratio that can be produced during H burning in giant stars.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.162701DOI Listing

Publication Analysis

Top Keywords

^{12}c/^{13}c ratio
12
hydrogen burning
8
giant stars
8
proton-capture rates
4
rates carbon
4
carbon isotopes
4
isotopes impact
4
impact astrophysical
4
astrophysical ^{12}c/^{13}c
4
ratio ^{12}c/^{13}c
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!