The greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a major bee pest that causes significant damage to beehives and results in economic losses. Bacillus thuringiensis (Bt) appears as a potential sustainable solution to control this pest. Here, we develop a novel Bt strain (designated BiotGm) that exhibits insecticidal activity against GWM larvae with a LC value lower than 2 μg/g, and low toxicity levels to honey bee with a LC = 20598.78 μg/mL for larvae and no observed adverse effect concentration = 100 μg/mL for adults. We design an entrapment method consisting of a lure for GWM larvae, BiotGm, and a trapping device that prevents bees from contacting the lure. We find that this method reduces the population of GWM larvae in both laboratory and field trials. Overall, these results provide a promising direction for the application of Bt-based biological control of GWM in beehives, although further optimization remain necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625538PMC
http://dx.doi.org/10.1038/s41467-023-42946-4DOI Listing

Publication Analysis

Top Keywords

gwm larvae
12
greater wax
8
wax moth
8
bacillus thuringiensis
8
gwm
5
moth control
4
control apiaries
4
apiaries improved
4
improved combining
4
combining bacillus
4

Similar Publications

The greater wax moth (GWM, ) is a prevalent pest of the honeybee and a significant risk to both honeybee populations and honeycomb storage. Research on the toxicity of essential oils (EOs) to GWM larvae has provided promising results, although their ovicidal effects and active ingredients require further study. Identifying effective plant compounds is essential for developing insecticides for GWM control.

View Article and Find Full Text PDF

Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments.

Nat Commun

November 2023

State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

The greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a major bee pest that causes significant damage to beehives and results in economic losses. Bacillus thuringiensis (Bt) appears as a potential sustainable solution to control this pest. Here, we develop a novel Bt strain (designated BiotGm) that exhibits insecticidal activity against GWM larvae with a LC value lower than 2 μg/g, and low toxicity levels to honey bee with a LC = 20598.

View Article and Find Full Text PDF

Beekeeping is essential for the global food supply, yet honeybee health and hive numbers are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens, diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and influences are blamed for diminishing honeybee colonies over the world. The greater wax moth (GWM), , is a pervasive pest of the honeybee, .

View Article and Find Full Text PDF

Greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a highly destructive honey bee pest prevalent throughout the world. It is considered as a major factor to the alarming decline in honey bee population. GWM destroys active honey combs as it feeds on the beeswax and lays eggs in bee hives, and the primary food of their larva is beeswax.

View Article and Find Full Text PDF

Some plant essential oil constituents, such as monoterpenoids and phenylpropanoids, are promising insecticides in some situations and for certain insect pests. They vary in their toxicity, depending on the target insect. Moths (Lepidoptera) appear susceptible to these compounds, making them of promise for use against greater wax moths (Galleria mellonella Fabricius, (Lepidoptera: Pyrallidae), GWM), an important pest of western honey bee (Apis mellifera Linnaeus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!