Graph neural networks in EEG spike detection.

Artif Intell Med

Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St, Miami, 33174, FL, USA.

Published: November 2023

Objective: This study develops new machine learning architectures that are more adept at detecting interictal epileptiform discharges (IEDs) in scalp EEG. A comparison of results using the average precision (AP) metric is made with the proposed models on two datasets obtained from Baptist Hospital of Miami and Temple University Hospital.

Methods: Applying graph neural networks (GNNs) on functional connectivity (FC) maps of different frequency sub-bands to yield a novel architecture we call FC-GNN. Attention mechanism is applied on a complete graph to let the neural network select its important edges, hence bypassing the extraction of features, a model we refer to as CA-GNN.

Results: On the Baptist Hospital dataset, the results were as follows: Vanilla Self-Attention →0.9029±0.0431, Hierarchical Attention →0.8546±0.0587, Vanilla Visual Geometry Group (VGG) →0.92±0.0618, Satelight →0.9219±0.046, FC-GNN →0.9731±0.0187, and CA-GNN →0.9788±0.0125. In the same order, the results on the Temple University Hospital dataset are 0.9692, 0.9113, 0.97, 0.9575, 0.963, and 0.9879.

Conclusion: Based on the good results they yield, GNNs prove to have a strong potential in detecting epileptogenic activity.

Significance: This study opens the door for the discovery of the powerful role played by GNNs in capturing IEDs, which is an essential step for identifying the epileptogenic networks of the affected brain and hence improving the prospects for more accurate 3D source localization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2023.102663DOI Listing

Publication Analysis

Top Keywords

graph neural
12
neural networks
8
baptist hospital
8
temple university
8
hospital dataset
8
networks eeg
4
eeg spike
4
spike detection
4
detection objective
4
objective study
4

Similar Publications

Unified Knowledge-Guided Molecular Graph Encoder with multimodal fusion and multi-task learning.

Neural Netw

December 2024

School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:

The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.

View Article and Find Full Text PDF

RAIN: Reconstructed-aware in-context enhancement with graph denoising for session-based recommendation.

Neural Netw

December 2024

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.

Session-based recommendation aims to recommend the next item based on short-term interactions. Traditional session-based recommendation methods assume that all interacted items are closely related to the user's interests. However, noise (e.

View Article and Find Full Text PDF

Identifying influential nodes in brain networks via self-supervised graph-transformer.

Comput Biol Med

December 2024

Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China. Electronic address:

Background: Studying influential nodes (I-nodes) in brain networks is of great significance in the field of brain imaging. Most existing studies consider brain connectivity hubs as I-nodes such as the regions of high centrality or rich-club organization. However, this approach relies heavily on prior knowledge from graph theory, which may overlook the intrinsic characteristics of the brain network, especially when its architecture is not fully understood.

View Article and Find Full Text PDF

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

Social media generates vast amounts of spatio-temporal sequential data. However, current methods often ignore the complex spatio-temporal correlations within these data. This oversight makes it difficult to fully capture the dynamic features of the data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!