Recently, a class of heterobifunctional small molecules called ribonuclease targeting chimeras (RiboTACs) have been developed that selectively induce degradation of RNAs in cells. These molecules function by recruiting latent ribonuclease (RNase L), an endoribonuclease involved in the innate immune response, to targeted RNA structures. The RiboTACs must activate RNase L in proximity to the RNA, resulting in cleavage of the RNA and downstream degradation. To develop and validate a new RiboTAC, several steps must be taken. First, small molecule activators that bind to RNase L must be identified. Next, since RNase L is only catalytically active upon ligand-induced homodimerization, the capability of identified small molecules to activate RNase L must be assessed. RNase L-activating small molecules should then be coupled to validated RNA-binding small molecules to construct the active RiboTAC. This RiboTAC can finally be assessed in cells for RNase L-dependent degradation of target RNAs. This chapter will provide several methods that are helpful to develop and assess RiboTACs throughout this process, including recombinant RNase L expression, methods to assess RNase L engagement in vitro such as saturation transfer difference nuclear magnetic resonance (STD NMR), an in vitro assay to assess activation of RNase L, and cellular methods to demonstrate RNase L-dependent cleavage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763923 | PMC |
http://dx.doi.org/10.1016/bs.mie.2023.06.006 | DOI Listing |
J Immunother Cancer
January 2025
Route de la Corniche 3B, Novigenix SA, 1066, Epalinges, Switzerland
Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.
Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms.
Free Radic Biol Med
January 2025
Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States.
We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Bioengineering, Xihua University, Chengdu 610039, China. Electronic address:
This study investigated the interactions between Capsaicinoids (CAPs) and beef myofibrillar proteins (MPs) in a peroxyl radical system and elucidated the antioxidant mechanisms of CAPs by multispectral and molecular docking. Results showed that low concentration CAPs prevented the oxidative changes of protein structure caused by the attack of AAPH radicals on MPs, while high concentration of CAPs changed the structure of the proteins to form more small molecule aggregates, and reduce the binding of actin-myosin, which was conducive to the tenderization of the meats. CAPs bound to the MPs through hydrophobic interaction, hydrogen bonding and electrostatic interaction, altering the secondary and tertiary structure of MPs, increasing the α-helix content of MPs, and improving the antioxidant structural stability of MPs.
View Article and Find Full Text PDFBiomaterials
January 2025
The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China. Electronic address:
Enterohepatic circulation (EHC) is a critical biological process for the normal regulation of many endogenous biomolecules and the increased retention of various exogenous substances. The status of EHC is closely related to the ordinary functioning of several digestive organs. However, it remains a challenge to achieve in vivo real-time visualization of this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!