Cholera is a waterborne disease caused by Vibrio cholerae bacteria generally transmitted through contaminated food or water sources. Although it has been eradicated in most Western countries, cholera continues to be a highly transmitted and lethal disease in several African and Southeast Asian countries. Unfortunately, current diagnostic methods for cholera have challenges including high cost or delayed diagnoses that can lead to increased disease transmission during pandemics, while current treatments such as therapeutic drugs and vaccines have limited efficacy against drug-resistant serogroups of Vibrio cholerae. As such, new solutions that can treat cholera in an efficient manner that avoids Vibrio cholerae's adaptive immunity are needed. Nanoparticles (NPs) are a suitable platform for enhancing current theranostic tools because of their biocompatibility and ability to improve drug circulation and targeting. Nanoparticle surfaces can also be modified with various protein receptors targeting cholera toxins produced by Vibrio cholerae. This review will address recent developments in diagnostics, therapeutics, and prevention against cholera particularly focusing on the use of metal-based nanoparticles and organic nanoparticles. We will then discuss future directions regarding nanoparticle research for cholera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.slast.2023.10.006 | DOI Listing |
PLoS One
January 2025
Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna, Bangladesh.
Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.
Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Scientific Research Department, Hunan Academy of Chinese Medicine, Changsha, China.
Objective: This study aims to explore the therapeutic mechanism of Massa Medicata Fermentata (MMF) with different formulations on spleen deficiency constipation in mice by analyzing gastrointestinal hormones, D-xylose, intestinal microbiota, and intestinal enzyme activities.
Methods: A spleen deficiency constipation model was established using an oral administration of Sennae Folium decoction combined with controlled diet and water intake. After successful model establishment, the mice with spleen deficiency constipation were treated with MMF S1, S2, S3.
Environ Microbiol Rep
February 2025
Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye.
Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Zambia National Public Health Institute, Lusaka, Zambia.
Zambia experienced the largest cholera epidemic in the country's history in 2023-2024; however, the antimicrobial susceptibility profile of Vibrio cholerae during the epidemic is unknown. A total of 2,384 stool samples were collected from suspected cholera cases in Eastern, Lusaka, and Luapula provinces in Zambia from January 2023 to March 2024. Among them, 549 (23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!