The market value of microalgae has grown exponentially over the past two decades, due to their use in the pharmaceutical, nutraceutical, cosmetic, and aquatic/animal feed industries. In particular, high-value products such as omega-3 fatty acids, proteins, and pigments derived from microalgae have high demand. However, the supply of these high-value microalgal bioproducts is hampered by several critical factors, including low biomass and bioproduct yields, inefficiencies in monitoring microalgal growth, and costly harvesting methods. To overcome these constraints, strategies such as synthetic biology, bubble generation, photobioreactor designs, electro-/magnetic-/bioflocculation, and artificial intelligence integration in microalgal production are being explored. These strategies have significant promise in improving the production of microalgae, which will further boost market availability of algal-derived bioproducts. This review focuses on the recent advances in these technologies. Furthermore, this review aims to provide a critical analysis of the challenges in existing algae bioprocessing methods, and highlights future research directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129924 | DOI Listing |
J Environ Manage
December 2024
College of Environmental and Resource Science, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
Microalgal-bacterial biofilms are a competitive wastewater treatment technology. This study investigated the impact of photoperiod on the characteristics and performance of these biofilms in treating pig farm wastewater. Under continuous lighting (L-24h), we observed optimal NH-N removal efficiency, minimal chlorophyll levels, and peak concentrations of polysaccharides and c-di-GMP.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFWater Res
December 2024
Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
As light intensity plays a pivotal role in the microalgal-bacterial granular sludge (MBGS) process, understanding its impact on system performance and energy dynamics is essential. This study investigated the effects of varying light intensities (20, 100, 200, and 300 μ mol/m²/s) on the performance of MBGS in urban wastewater treatment, with a particular focus on glycogen accumulation and pollutant removal. The results demonstrated that light intensity significantly influenced microbial community structure, glycogen accumulation, and pollutant removal efficiency.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!