Ethnopharmacological Relevance: The overuse of antibiotics has resulted in Clostridium difficile infection (CDI) as a significant global public health concern. Studies have shown that imbalances in gut microbiota and metabolism play a vital role in the onset of CDI. Shengjiang Xiexin decoction (SJT), a traditional Chinese medicinal formula widely employed in the treatment of gastrointestinal ailments, demonstrates effectiveness in addressing murine CDI. However, the precise mechanistic role of SJT in CDI treatment remains uncertain, particularly regarding its impact on gut microbiota and intestinal metabolism. Thus, further investigation is imperative to shed light on these mechanisms.
Aim Of The Study: This study aims to thoroughly investigate the therapeutic potential of SJT in the treatment of CDI, while also examining its impact on the intricate interplay between gut microbiota and bile acid metabolism. By employing a mouse model, we aspire to uncover novel insights that could pave the way for the development of more effective strategies in combating CDI.
Materials And Methods: We developed a mouse model for CDI and assessed SJT's potential as a therapeutic agent through pharmacological analyses. Our study employed high-throughput sequencing of 16S rRNA to identify changes in gut microbiota composition and untargeted metabolomics analysis to evaluate SJT's intervention on intestinal metabolism. We also conducted targeted analysis of bile acid metabolism to examine the specific effects of SJT. Finally, the growth-inhibitory effect of SJT on C. difficile was confirmed through ex vivo cultivation of the pathogen using cecal contents, supporting its potential role in treating CDI by modulating gut microbiota and bile acid metabolism.
Results: In pharmacological studies, SJT was found to effectively reduce the levels of A&B toxins and alleviate colonic inflammation in CDI mice. Mechanistically, SJT demonstrated a mild increase in the abundance and diversity of the gut microbiota. However, its most significant impact was observed in the substantial improvement of the structural composition of the gut microbiota. Specifically, SJT decreased the abundance of gut Polymorphs and Firmicutes while restoring the proportions of family Trichophyton and Bacteroides_S24-7 spp (P < 0.001). Moreover, SJT not only decreased the levels of primary bile acids but also elevated the levels of secondary bile acids. Notably, it enhanced the conversion of taurocholic acid (TCA) to deoxycholic acid (DCA), leading to a balanced bile acid metabolism. Finally, cecal contents of SJT-treated mice showed a significant reduction in the growth of C. difficile, underscoring the therapeutic potential of SJT via modulation of gut microbiota and bile acid metabolism.
Conclusion: SJT demonstrates remarkable efficacy in treating CDI in mice by not only effectively combating the infection but also restoring the intricate balance of gut microbiota and bile acid metabolism. Furthermore, promising indications suggest that SJT may have the potential to prevent CDI recurrence. These findings underscore the comprehensive therapeutic value of SJT in managing CDI. Moving forward, we plan to transition from the laboratory to clinical settings to conduct further studies, validating our conclusions on SJT's efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.117384 | DOI Listing |
Comput Biol Med
January 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. Electronic address:
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524000, People's Republic of China.
2-Amino-3-methylimidazole [4,5-] quinoline (IQ) is a kind of heterocyclic amine (HCAs) with high carcinogenicity in hot processed meat. Rutin (Ru) is a flavonoid compound with anti-inflammatory and antioxidant properties. However, whether Ru is scatheless under IQ-stimulated potential unhealthy conditions, especially liver function, in vivo, is unknown.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China.
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!