Int J Biol Macromol
School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China. Electronic address:
Published: January 2024
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.