Shipping traffic, salinity and temperature shape non-native fish richness in estuaries worldwide.

Sci Total Environ

Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil.

Published: January 2024

Non-native species threaten biodiversity conservation and ecosystem functioning. Management at early-invasion stages can prevent ecological and socioeconomic impacts, but rely on the identification of drivers of non-native species occurrence at distinct scales. Here, we identify environmental and anthropogenic correlates of non-native fish richness across estuaries worldwide. We performed model selection using proxies of colonization pressure, habitat availability and connectivity, anthropogenic disturbance and climate, to assess the primary mechanisms underlying non-native species occurrence. Latitudinal and guild-related trends in non-native occurrence were also investigated using species thermal and salinity affinities. Data retrieved from a literature review revealed 147 non-native fish species in 147 estuaries worldwide. Shipping traffic, salinity (minimum and range values) and temperature (minimum value) were the main predictors of non-native fish richness. Hotspots of non-native species were under heavy levels of shipping traffic, had higher salinity (both minimum and range values) and colder waters. We also found evidence of thermal limits to species' geographic area of introduction. Latitude of invaded estuaries was negatively correlated with species' minimum, mean and maximum thermal affinities, and positively correlated with thermal affinity ranges. Most non-native species recorded in estuaries were freshwater, but their minimum salinity affinities ranged from 2 to 35 pss. Moreover, species within marine guilds were mostly stenohaline and showed affinity for minimum salinities around 20-30 pss, which may be related to the positive relationship between non-native richness and estuary's increased salinity. Our results indicate that colonization pressure, disturbance (as result of multiple shipping impacts) and habitat filtering are the primary mechanisms underlying non-native fish richness in estuaries, contributing to the development of management strategies targeting early-invasion stages. Matching climate between native and non-native ranges was particularly important for predicting introductions at the global scale, whereas local fluctuations in salinity likely drove non-native richness in response to increased habitat availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168218DOI Listing

Publication Analysis

Top Keywords

non-native fish
20
non-native species
20
fish richness
16
non-native
14
shipping traffic
12
richness estuaries
12
estuaries worldwide
12
traffic salinity
8
species
8
early-invasion stages
8

Similar Publications

This study aims to determine and compare the reference values of the haematological and biochemical blood parameters of two fish species collected from the Gökova Bay (Muğla, South-Western of Türkiye): the non-native and invasive Randall's threadfin bream, and the native Common pandora, . Both species inhabit the same environment and compete for resources. Blood samples were collected from a total of 100 fish samples (50 and 50 ) which were caught from a depth of 30 to 60 meters between February 2023 and July 2024.

View Article and Find Full Text PDF

In the North Sea, offshore oil and gas (O&G) platforms must be totally removed through decommissioning at the end of their productive life. However, the role of O&G platforms in marine ecosystems, especially for fish assemblages, is not well enough defined yet. Here, we document the association between an O&G platform in the North Sea and the fish assemblages along a distance gradient of 1-600 m from the platform.

View Article and Find Full Text PDF

Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non-native species using ecological niche models.

View Article and Find Full Text PDF

The main contributor to Türkiye's abundant freshwater fish biodiversity is its geographic location. This fauna consists of endemic, native, and non-native fish species. The introduction of Gambusia holbrooki Girard, 1859 to Lake Amik in the 1920s for the biological control of malaria was the first introduction of nonnative species to Türkiye.

View Article and Find Full Text PDF

Genetic diversity and intercontinental dispersal of temperate and subarctic populations of Dibothriocephalus dendriticus (Cestoda; Diphyllobothriidea), a causative agent of dibothriocephalosis.

Int J Parasitol

January 2025

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic. Electronic address:

The diphyllobothriid tapeworm Dibothriocephalus dendriticus, one of the causative agents of the fish-borne zoonosis dibothriocephalosis, is mainly distributed in the Arctic/subarctic and temperate zones of the Northern Hemisphere (Europe, North America, and Asia), but also in the southern cone region of South America (Patagonia). The genetic structure and gene flow among 589 individuals of D. dendriticus, representing 20 populations, were studied using the mitochondrial cox1 gene as the first choice marker and 10 polymorphic nuclear microsatellite loci as a dominant molecular tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!