Heavy metals (HMs) in groundwater seriously threaten ecological safety and human health. To facilitate the effective management of groundwater contamination, priority control factors of HMs in groundwater need to be categorized. A total of 86 groundwater samples were collected from the Huangpi district of Wuhan city, China, during the dry and wet seasons. To determine priority control factors, a source-oriented health risk assessment model was applied to compare the pollution sources and health risks of seven HMs (Cu, Pb, Zn, Cr, Ni, As, and Fe). The results showed that the groundwater had higher As and Fe contents. The sources of HM pollution during the wet period were mainly industrial and agricultural activities and natural sources. During the dry period, origins were more complex due to the addition of domestic discharges, such as sewage wastewater. Industrial activities (74.10% during the wet period), agricultural activities (53.84% during the dry period), and As were identified as the priority control factors for groundwater HMs. The results provide valuable insights for policymakers to coordinate targeted management of HM pollution in groundwater and reduce the cost of HM pollution mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115642 | DOI Listing |
Alzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern California, Los Angeles, CA, USA.
Background: Blood pressure (BP) management is an accessible therapeutic target for dementia prevention. BP variability (BPV) is a newer aspect of BP control recently associated with cognitive decline, dementia and Alzheimer's disease (AD), independent of traditionally targeted mean BP levels. Most of this work has relied on largely non-Hispanic White study samples in observational cohorts.
View Article and Find Full Text PDFBackground: Alzheimer's disease is the most dreaded multifactorial neurological illness for which there is currently no known treatment. Although the exact cause of AD is still unknown, several factors related to lifestyle, genetics, and environment are known to have a significant role in the disease's development. Alzheimer's disease is characterized by neuronal loss, neurofibrillary tangles, and senile plaques.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!