Positron emission tomography/computed tomography (PET/CT) is increasingly used in oncology, neurology, cardiology, and emerging medical fields. The success stems from the cohesive information that hybrid PET/CT imaging offers, surpassing the capabilities of individual modalities when used in isolation for different malignancies. However, manual image interpretation requires extensive disease-specific knowledge, and it is a time-consuming aspect of physicians' daily routines. Deep learning algorithms, akin to a practitioner during training, extract knowledge from images to facilitate the diagnosis process by detecting symptoms and enhancing images. This acquired knowledge aids in supporting the diagnosis process through symptom detection and image enhancement. The available review papers on PET/CT imaging have a drawback as they either included additional modalities or examined various types of AI applications. However, there has been a lack of comprehensive investigation specifically focused on the highly specific use of AI, and deep learning, on PET/CT images. This review aims to fill that gap by investigating the characteristics of approaches used in papers that employed deep learning for PET/CT imaging. Within the review, we identified 99 studies published between 2017 and 2022 that applied deep learning to PET/CT images. We also identified the best pre-processing algorithms and the most effective deep learning models reported for PET/CT while highlighting the current limitations. Our review underscores the potential of deep learning (DL) in PET/CT imaging, with successful applications in lesion detection, tumor segmentation, and disease classification in both sinogram and image spaces. Common and specific pre-processing techniques are also discussed. DL algorithms excel at extracting meaningful features, and enhancing accuracy and efficiency in diagnosis. However, limitations arise from the scarcity of annotated datasets and challenges in explainability and uncertainty. Recent DL models, such as attention-based models, generative models, multi-modal models, graph convolutional networks, and transformers, are promising for improving PET/CT studies. Additionally, radiomics has garnered attention for tumor classification and predicting patient outcomes. Ongoing research is crucial to explore new applications and improve the accuracy of DL models in this rapidly evolving field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2023.107880 | DOI Listing |
Anal Methods
January 2025
School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Oncology, Dongying District People's Hospital 333 Jinan Road, Dongying District, Dongying, Shandong, China.
The use of routine adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) is controversial in elderly patients with early-stage breast cancer (EBC). This study aimed to evaluate the efficacy of adjuvant RT for elderly EBC patients using deep learning (DL) to personalize treatment plans. Five distinct DL models were developed to generate personalized treatment recommendations.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Cardiology Department, Bichat Hospital, Paris, France.
Background: Detection of atrial tachyarrhythmias (ATA) on long-term electrocardiogram (ECG) recordings is a prerequisite to reduce ATA-related adverse events. However, the burden of editing massive ECG data is not sustainable. Deep learning (DL) algorithms provide improved performances on resting ECG databases.
View Article and Find Full Text PDFVariant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFAlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!