Impact of dust deposition on the growth of marine autotrophic and heterotrophic microorganisms: Evidence from the South China Sea.

Mar Pollut Bull

Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China. Electronic address:

Published: December 2023

Aeolian dust can provide nutrients for the ocean and affect the growth of phytoplankton. However, the impacts of dust deposition on autotrophic and heterotrophic microorganisms have rarely been studied. In this study, we conducted two microcosm experiments in the low-nutrient and low-chlorophyll environment of the South China Sea and found that dust did not stimulate the abundance of autotrophic and heterotrophic microorganisms. Our results show that dust contains most of the unreacted iron-bearing minerals, and thus provides limited bioavailable iron and nitrogen for bacterioplankton and phytoplankton growth. These results elucidate the overlooked impacts of the properties of the iron-bearing minerals in aeolian dust on microbial communities, which may play an important role in marine ecosystems and climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115749DOI Listing

Publication Analysis

Top Keywords

autotrophic heterotrophic
12
heterotrophic microorganisms
12
dust deposition
8
south china
8
china sea
8
aeolian dust
8
iron-bearing minerals
8
dust
5
impact dust
4
deposition growth
4

Similar Publications

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals.

Biotechnol Adv

January 2025

Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China. Electronic address:

Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO as the sole carbon source, with H serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals.

View Article and Find Full Text PDF

An in-depth understanding of carbon dynamics and ecosystem productivity is essential for conservation and management of different ecosystems. Ecosystem dynamics and carbon budget are assessed by estimating net ecosystem production (NEP) across different global ecosystems. An ecological productivity assessment of forest and floating meadow ecosystems in Keibul Lamjao National Park (KLNP), Manipur, North East India, was conducted using the multi-criteria decision-making process namely, gray relational analysis (GRA).

View Article and Find Full Text PDF

A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-cl, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-cl grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.

View Article and Find Full Text PDF

Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!