Background: The prevalence of cardiac fibrosis, intricately linked to various cardiovascular diseases, continues to rise. Aconite, a traditional Chinese herb renowned for its cardiovascular benefits, holds promise in treating heart ailments. However, the mechanisms underlying its anti-fibrotic effects, particularly in cardiac fibrosis, remain elusive.
Hypothesis/purpose: This study aims to shed light on aconite's potential as an anti-fibrotic agent and elucidate its mechanisms in a rat model of isoproterenol (ISO)-induced cardiac fibrosis.
Methods: By inducing cardiac fibrosis through ISO injection, the study investigates the role of decoction of white aconite (DWA) in mitigating fibrotic processes. Techniques including metabolomics, RT-qPCR, western blot, and immunofluorescence were employed to unveil the molecular changes induced by DWA.
Results: DWA exhibited a remarkable reduction in echocardiographic parameters, cardiac weight increase, myocardial infarction extent, inflammatory cell infiltration, collagen deposition in heart tissue, and serum CK-MB, cTnT, cTnI levels post ISO injection. Metabolomic analysis unveiled DWA's modulation of 27 metabolites, especially in galactose metabolism, addressing metabolic disturbances in cardiac fibrosis. Additionally, DWA suppressed mRNA expression of fibrosis markers (Collagen I, CTGF, TGF-β), inhibited protein levels of MMP-9, α-SMA, and Galectin-3, while elevating TIMP1 expression.
Conclusion: DWA demonstrated potent anti-fibrotic effects by curbing collagen deposition and alleviating metabolic disruptions in cardiac fibrosis via the galactose metabolism pathway, possibly mediated by the Gal-3/TGF-β/Smad signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.155112 | DOI Listing |
Mediators Inflamm
January 2025
Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.
View Article and Find Full Text PDFBackground: Left bundle branch area pacing (LBBAP) is widely performed in routine clinical practice. Achieving LBBAP requires deep insertion of the lead into the interventricular septum. LBBAP may be challenging in patients with a history of open-heart surgery (OHS) because of myocardial fibrosis associated with surgical trauma.
View Article and Find Full Text PDFAnatol J Cardiol
January 2025
Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye.
Background: A primary factor in the pathogenesis of aging is oxidative stress, with cardiac inflammation and fibrosis being contributed to by increased oxidative stress as organisms age. Oxidative stress enhances the cardiac fibrotic signaling pathway, with reactive oxygen species inducing cardiac fibrosis through increased expression of the profibrotic factor transforming growth factor-beta 1 (TGF-β1). Furthermore, Wnt/β-catenin signaling pathway is implicated in interstitial fibrosis, which is associated with TGF-β.
View Article and Find Full Text PDFJ Transl Med
January 2025
Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!