Acetylsalicylic acid (ASA), also known as aspirin, was discovered in 1897 as an acetylated form of salicylate. It has been widely used for its anti-inflammatory and antiplatelet effects. It is commonly used for its cardiovascular benefits and is prescribed as secondary prophylaxis after a heart attack. Furthermore, low-dose, long-term ASA is used to reduce the risk of heart attack and stroke in individuals without prior cardiovascular disease. Acetylsalicylic acid acts as a non-selective inhibitor of cyclooxygenase (COX), which inhibits the synthesis of prostaglandins and prevents pro-inflammatory cytokines. Findings suggest that targeting cytokines and growth factors could be a potential therapeutic strategy for reducing neuroinflammation and slowing down the progression of dementia. Additionally, prostaglandins contribute to synaptic plasticity and can act as retrograde messengers in synapses. Research has implicated COX-1, one of the isoforms of the enzyme, in neuroinflammation and neurodegenerative disorders. The inhibition of COX-1 might potentially prevent impairments in working memory and reduce neuroinflammation caused by beta-amyloid proteins in some conditions, such as Alzheimer's disease (AD). Cyclooxygenase-2, an inducible form of the enzyme, is expressed in cortical and hippocampal neurons and is associated with long-term synaptic plasticity. The inhibition or knockout of COX-2 has been shown to decrease long-term potentiation, a process involved in memory formation. Studies have also demonstrated that the administration of COX-2 inhibitors impairs cognitive function and memory acquisition and recall in animal models. There remains a debate regarding the effects of aspirin on dementia and cognitive decline. Although some studies suggest a possible protective effect of non-steroidal anti-inflammatory drugs, including aspirin, against the development of AD, others have shown inconsistent evidence. This review provides an overview of the effects of ASA or its active metabolite salicylate on learning, memory, and synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10787-023-01347-1 | DOI Listing |
Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.
Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.
Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.
Alzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Background: To improve clinical translatability of non-clinical in-vivo Alzheimer's disease (AD) models, a humanized APP knock-in mouse model (APP) was recently created (Xia, D. et al., 2022).
View Article and Find Full Text PDFBackground: Alzheimer's disease is the most dreaded multifactorial neurological illness for which there is currently no known treatment. Although the exact cause of AD is still unknown, several factors related to lifestyle, genetics, and environment are known to have a significant role in the disease's development. Alzheimer's disease is characterized by neuronal loss, neurofibrillary tangles, and senile plaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!