Purpose Of Review: Breast cancer with brain metastasis (BCBM) and leptomeningeal disease (LMD) are important clinical problems. Traditionally, patients with metastases to the brain and meninges were excluded from clinical trials; hence, robust, evidence-based treatment recommendations are lacking. In this review, we outline the systemic treatment options and ongoing clinical trials.
Recent Findings: Several recent studies have added to the systemic treatment options available. Antibody-drug conjugates have changed the therapeutic landscape. Combination treatment modalities that target multiple mechanisms including disruption of the blood brain barrier are increasingly being studied. Breast cancer with brain metastases and LMD is a heterogenous disease. While the prognosis remains grim, with more systemic treatment options, patients with BCBM are now living longer. Many ongoing clinical trials hold promise to further improve outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11912-023-01468-4 | DOI Listing |
Expert Rev Gastroenterol Hepatol
January 2025
Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland.
Introduction: Advances in treatment strategies for gastric and esophageal cancer have led to improved long-term outcomes, however the local and systemic effects of tumor growth, neoadjuvant therapies and surgery, results in specific nutritional challenges. Comprehensive nutritional evaluation and support represents a core component of multidisciplinary holistic care for this patient population.
Areas Covered: This review provides a detailed overview of the nutritional challenges in gastric and esophageal cancer, with a focus on malignant obstruction, preoperative optimization and nutrition in survivorship.
Orv Hetil
January 2025
1 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Aneszteziológiai és Intenzív Terápiás Intézet Pécs, Ifjúság u. 13., 7624 Magyarország.
Cytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Providence Swedish Cancer Institute, Seattle, Washington.
Purpose: Standard therapy for breast cancer after breast-conserving surgery is radiation therapy (RT) plus hormone therapy (HT). For patients with a low-risk of recurrence, there is an interest in deescalating therapy.
Methods And Materials: A retrospective study was carried out for patients treated at the Swedish Cancer Institute from 2000 to 2015, aged 70 years or older, with pT1N0 or pT1NX estrogen receptor-positive and ERBB2-negative unifocal breast cancer without positive surgical margins, high nuclear grade, or lymphovascular invasion.
Am J Kidney Dis
January 2025
Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!