Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the effect of cation polyacrylamide (CPAM) on the dewatering performance of dredged sludge by batch experiments and compared it with a novel organic agent (DRC-300) and a traditional inorganic agent (PAC). The results of batch experiments suggested that the CPAM could promote the dewatering performance of dredged sludge inland lake. And at the dosage of 0.07% g/g suspended solids (SS), the moisture content of 37% could be achieved with CAPM. CPAM could reduce the sludge resistance filtration (SRF) and capillary adsorption time (CST) by 73% and 62%, respectively. Mechanism experiments revealed that CPAM improved the dewatering performance of dredged mud by increasing the sedimentation rate, accelerating the dissolution of organic matter, neutralizing the surface charge of sludge, and improving the void structure. Furthermore, CPAM outperformed DRC-300 and PAC in above aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30666-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!