Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: The increasing demand for fuels and chemicals in the world has prompted the exploration of various forms of renewable energy resources. Using C5-based furfural as the platform to replace the fossil energy resources is greatly attractive because of its abundance and environmental friendliness. Here we study the activity, selectivity, and possible reaction pathways for the Baeyer-Villiger oxidation of furfural over small Au clusters using hydrogen peroxide as oxidant. Furfural reacts with hydrogen peroxide in the presence of the catalysts with 93% selectivity towards maleic anhydride. Natural population analysis, frontier molecular orbital analysis, and spectroscopic analysis are used to illustrate the interaction mechanism between CHO, HO, and Au. Reaction pathways leading to the formation of maleic anhydride are also explored. The reaction of CHO with HO in the absence of a catalyst bears a relatively high transition state energy barrier of 2.98 eV for the first step involving absorption of H atom of HO on the -OH group of CHO. This is in agreement with the blank experiment where there were rare oxidation products observed in the absence of the metal cluster catalysts. On the other hand, transition state energies in the presence of the Au metal clusters are lower and the most feasible pathway is where the substrate and HO co-bind on the Au catalyst and HO molecule transfers an oxygen to the substrate, leading to the cleavage of the O-O bond.
Methods: DFT calculations were done with B3PW91 functional. 6-311G(df, p) basis set was used for C, O, and H and aug-cc-pVDZ-PP was used for gold atoms. Gaussian 09 software was used for the calculations. Multiwfn 3.7 dev was used for the quantum theory of atoms-in-molecules (QTAIM) investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05764-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!