Background: Triple-negative breast cancer (TNBC) is characterized by aggressive growth and a high propensity for recurrence and metastasis. Simultaneous overexpression of c-MET and EGFR in TNBC is associated with worse clinicopathological features and unfavorable outcomes. Although the development of new c-MET inhibitors and the emergence of 3-generation EGFR inhibitors represent promising treatment options, the high costs involved limit the accessibility of these drugs. In the present study, we sought to investigate the therapeutic potential of doxazosin (DOXA), a generic drug for benign prostate hyperplasia, in targeting TNBC.
Methods: The effect of DOXA on TNBC cell lines in vitro was evaluated in terms of cell viability, apoptosis, c-MET/EGFR signaling pathway, molecular docking studies and impact on cancer stem cell (CSC)-like properties. An in vivo metastatic model with CSCs was used to evaluate the efficacy of DOXA.
Results: DOXA exhibits notable anti-proliferative effects on TNBC cells by inducing apoptosis via caspase activation. Molecular docking studies revealed the direct interaction of DOXA with the tyrosine kinase domains of c-MET and EGFR. Consequently, DOXA disrupts important survival pathways including AKT, MEK/ERK, and JAK/STAT3, while suppressing CSC-like characteristics including CD44/CD24 subpopulations, aldehyde dehydrogenase 1 (ALDH1) activity and formation of mammospheres. DOXA administration was found to suppress tumor growth, intra- and peri-tumoral angiogenesis and distant metastasis in an orthotopic allograft model with CSC-enriched populations. Furthermore, no toxic effects of DOXA were observed in hepatic or renal function.
Conclusions: Our findings highlight the potential of DOXA as a therapeutic option for metastatic TNBC, warranting further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625208 | PMC |
http://dx.doi.org/10.1186/s13046-023-02866-z | DOI Listing |
Sci Rep
January 2025
Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK.
Dysregulation of integral membrane proteins (IMPs) has been linked to a myriad of diseases, making these proteins an attractive target in drug research. Whilst PROTAC technology has had a significant impact in scientific research, its application to IMPs is still limited. Limitations of the traditional approach of immunoblotting in PROTAC research include the low throughput compared to other methods, as well as a lack of spatial information for the target.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
Background: Tumor recurrence or metastasis after surgery is a significant factor influencing bladder cancer (BC) prognosis. Novel molecular biomarkers are necessary to determine each patient's specific outcome because current biomarkers have limited power for predicting prognosis. The proto-oncogene MET encodes c-MET, a tyrosine kinase receptor.
View Article and Find Full Text PDFMil Med Res
December 2024
Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
Crit Rev Oncol Hematol
December 2024
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China. Electronic address:
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.
View Article and Find Full Text PDFJ Gastrointest Cancer
December 2024
Duke Cancer Institute, Duke University, Durham, NC, USA.
Purpose: MET amplification (amp) is a driver of acquired resistance to epidermal growth factor receptor (EGFR) antibodies in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC). Savolitinib is an oral small molecule tyrosine kinase inhibitor that has demonstrated anti-tumor activity in MET-driven advanced solid tumors. We report the results of a phase 2 study of savolitinib in patients with mCRC with MET amp detected by circulating cell free (cf)DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!