Background: Sleep deprivation (SD) can lead to the development of various pathological disorders. The extracellular matrix (ECM) compositions and circadian rhythm genes are two pivotal variables of SD. However, their relationships remain undefined during SD.
Methods: A mouse SD model was established using a modified multiplatform water environment method. The expression of nerve growth factor (NGF) in mouse hippocampus was detected by an immunofluorescence (IF) method. Protein expression was assessed by western blot, and mRNA analysis was performed by quantitative real-time PCR (qRT-PCR). The differentially expressed genes after SD, the genes associated with stromal score, and gene expression correlation were analyzed by bioinformatic analysis.
Results: The mouse model of SD was successfully established, as evidenced by the changed morphology, increased Bax and NGF levels, and downregulated Bcl-2 in mouse hippocampus after SD. The differentially expressed genes after SD were closely associated with the ECM compositions. The ECM composition metalloproteinase 9 (MMP9) was under-expressed in mouse hippocampus after SD. The hippocampal MMP9 expression was correlated with the expression levels of circadian genes PER2, PER3, TIMELESS, FBXL3, and NFIL3. PER2 and TIMELESS were upregulated in mouse hippocampus after SD.
Conclusion: The current findings suggest a correlation between ECM composition MMP9 and circadian rhythm-related genes PER2 and TIMELESS in mouse hippocampus after SD, providing a novel understanding of the disorders after SD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136824 | PMC |
http://dx.doi.org/10.1007/s11325-023-02929-7 | DOI Listing |
The role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Département de Readaptation et gériatrie, University of Geneva, Geneva, Switzerland.
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT).
View Article and Find Full Text PDFToxicology
January 2025
School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:
Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!