Entropy generation is a concept that is primarily associated with thermodynamics and engineering, and it plays a crucial role in understanding and optimizing various processes and systems. Applications of entropy generation can be seen in turbo machinery, reactors, chillers, desert coolers, vehicle engines, air conditioners, heat transfer devices and combustion. Due to industrial applications entropy generation has gained attention of researchers. Owing such applications, current communication aims to model and analyzed the irreversibility in Sutterby nanoliquid flow by stretched cylinder. Momentum equation is reported by considering porosity, Darcy Forchheimer and magnetic field. While in energy equation radiation and Joule heating effects are accounted. Activation energy impact is accounted in the modeling of concentration equation. Thermodynamics second law is utilized for physical description of irreversibility analysis. Through similarity transformations dimensional equations representing flow are transformed to dimensionless ones. Numerical solution for ordinary system is obtained via Runge-Kutta-Fehlberg scheme in Mathematica platform through NDsolve code. Influence of prominent variables on velocity, entropy, temperature, Bejan number and concentration are graphically analyzed. Coefficient of skin friction, gradient of temperature and Sherwood number are numerically analyzed. The obtained results show that velocity field decreases through higher porosity and Forchheimer variables. Velocity and temperature curves shows an opposite trend versus magnetic parameter. A decay in concentration distribution is noticed through larger Schmidt number. Entropy generation amplifies against magnetic parameter and Brinkman number.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624690 | PMC |
http://dx.doi.org/10.1038/s41598-023-46439-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!