Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624656PMC
http://dx.doi.org/10.1038/s41467-023-42809-yDOI Listing

Publication Analysis

Top Keywords

microglial engulfment
8
light microscopy
8
lipo-af signal
8
gray matter
8
microglia
5
lipofuscin-like autofluorescence
4
autofluorescence microglia
4
microglia impact
4
impact studying
4
studying microglial
4

Similar Publications

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Direct engulfment of synapses by overactivated microglia due to cadmium exposure and the protective role of Nrf2.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China. Electronic address:

Cadmium (Cd), a notorious environmental pollutant, has been linked to neurological disorders, but the underlying mechanism remains elusive. We aimed to explore the role of microglia in Cd-induced synaptic damages at environmentally relevant doses and whether microglia directly engulf synaptic structures. Nrf2 is deeply implicated in the status of microglial activation; therefore, we also investigated whether it is involved in the above process.

View Article and Find Full Text PDF

Brain injury represents the leading cause of mortality and disability after cardiopulmonary resuscitation (CPR) from cardiac arrest (CA), in which the accumulation of dying cells aggravate tissue injury by releasing proinflammatory intracellular components. Microglia play an essential role in maintaining brain homeostasis via milk fat globule epidermal growth factor 8 (MFG-E8)-opsonized efferocytosis, the engulfment of dying cells and debris. This study investigates whether potentiating microglia efferocytosis by MFG-E8 provides neuroprotection after CA/CPR.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) and other tauopathies are characterized by intracellular aggregates of microtubule-associated protein tau that are actively released and promote proteopathic spread. Microglia engulf pathological proteins, but how they endocytose tau is unknown.

Methods: We measured endocytosis of different tau species by microglia after pharmacological modulation of macropinocytosis or clathrin-mediated endocytosis (CME) or antagonism/genetic depletion of known tau receptors heparan-sulfate proteoglycans (HSPGs) and low-density lipoprotein receptor-related protein 1 (LRP1).

View Article and Find Full Text PDF

Microglia are crucial for brain development and their function can be impacted by postnatal insults, such as early-life allergies. These are characterized by an upregulation of interleukin (IL)-4 levels. Allergies share a strong comorbidity with Autism Spectrum Disorders (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!