Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624832 | PMC |
http://dx.doi.org/10.1038/s41467-023-42735-z | DOI Listing |
Nutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA.
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemistry, University of Campinas UNICAMP, Campinas 13083-862, SP, Brazil.
HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Health Science Center, East China Normal University, Shanghai 200241, China.
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!