The biochemical behavior and mechanism of uranium(Ⅵ) bioreduction induced by natural Bacillus thuringiensis.

J Environ Sci (China)

Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China. Electronic address:

Published: February 2024

For a broader understanding of uranium migration affected by microorganisms in natural anaerobic environment, the bioreduction of uranium(Ⅵ) (U(Ⅵ)) was revealed in Bacillus thuringiensis, a dominant bacterium strain with potential of uranium-tolerant isolated from uranium contaminated soil. The reduction behavior was systematically investigated by the quantitative analysis of U(Ⅳ) in bacteria, and mechanism was inferred from the pathway of electron transmission. Under anaerobic conditions, appropriate biomass and sodium lactate as electron donor, reduction behavior of U(Ⅵ) induced by B. thuringiensis was restricted by the activity of lactate dehydrogenase, which was directly affected by the initial pH, temperature and initial U(Ⅵ) concentration of bioreduction system. Bioreduction of U(Ⅵ) was driven by the generation of nicotinamide adenine dinucleotide (NADH) from enzymatic reaction of sodium lactate with various dehydrogenase. The transmission of the electrons from bacteria to U(Ⅵ) was mainly supported by the intracellular NADH dehydrogenase-ubiquinone system, this process could maintain the biological activity of cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.12.001DOI Listing

Publication Analysis

Top Keywords

bacillus thuringiensis
8
reduction behavior
8
sodium lactate
8
lactate dehydrogenase
8
uⅥ
5
biochemical behavior
4
behavior mechanism
4
mechanism uraniumⅥ
4
bioreduction
4
uraniumⅥ bioreduction
4

Similar Publications

A bibliometric analysis of biopesticides in corn pest management: Current trends and future prospects.

Heliyon

November 2024

Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia.

This bibliographic review paper presents a comprehensive analysis of the scholarly literature on biopesticides utilized in corn pest management, employing a bibliometric approach to identify current trends and prospects in the field. The growing demand for sustainable agricultural practices has fueled interest in biopesticides as effective alternatives to conventional chemical pesticides. By systematically examining relevant publications, this review synthesizes the collective knowledge on biopesticide applications in corn production, encompassing various types of biopesticides, their modes of action, efficacy against key corn pests, and environmental considerations.

View Article and Find Full Text PDF

Characterization of an Ecdysone Oxidase from (L.) and Its Role in Bt Cry1Ac Resistance.

J Agric Food Chem

January 2025

State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Understanding the molecular mechanisms underlying insect resistance to (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the ecdysone oxidase gene () in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected .

View Article and Find Full Text PDF

Potential of Bacillus thuringiensis isolates to manage Gonipterus platensis (Coleoptera: Curculionidae) larvae populations.

Environ Entomol

December 2024

Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil.

The growing expansion of eucalyptus plantations in Brazil and the impact of exotic pests, such as Gonipterus platensis, demand effective, and sustainable biological control strategies. The aim of this study was to assess the pathogenicity of 10 Bacillus thuringiensis (Bt) isolates to neonate Gonipterus platensis larvae, commonly known as the eucalyptus weevil (Coleoptera: Curculionidae) with the specific focus of evaluating their potential to manage this pest while preserving its egg parasitoid, Anaphes nitens. To achieve this, the genomic DNA of the 10 Bt isolates was extracted using the thermal lysis method for molecular characterization of their Cry and Vip proteins.

View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!