Hexabromocyclododecane (HBCD) is a persistent organic pollutant (POP). HBCD is found in the blood and tissues of most populations and causes a range of toxicological damage to tissues and cells. However, the toxicological effects of HBCD on chondrocytes are not fully understood. Here, we evaluated the toxicological effects of HBCD on chondrocytes and cartilaginous tissue. For this, a model of primary cartilage cells was established. Chondrocytes were exposed to different concentrations of HBCD. Western blot, indirect immunofluorescence, ELISA and other biochemical experiments were performed to analyze the toxicological effects of HBCD on chondrocytes/articular cartilage tissue. Cell proliferation assays showed that HBCD caused a reduction in the proliferative capacity of chondrocytes, and further work indicated that HBCD induces chondrocyte death. Further experiments demonstrated that HBCD caused an inflammatory response in chondrocytes by evaluating the levels of inflammatory factors. We found that HBCD led to PANoptosis in chondrocytes by detecting panapoptosis-related marker molecules, and experimental data indicated that apoptosis markers (cleaved caspase-3/7), pyroptosis markers (caspase-1/GSDMD-N) and necroptosis markers (pMLKL/RIPK3) were upregulated after HBCD treatment. Subsequent experiments illustrated that HBCD activated the DAMP sensor NLRP3, which then mediated ZBP1-induced PANoptosis. In the in vivo model, the experimental animals were administered HBCD at 25, 50 and 100 µg/kg/week for 15 weeks. We found that HBCD led to an inflammatory response in articular cartilage tissue. The safranin O-fast green assay showed a certain degree of damage to cartilage tissue under HBCD treatment. Furthermore, HBCD resulted in an increase in MMP13 expression and a downregulation of COL2 expression in chondrocytes/cartilaginous tissues. HBCD decreased the exercise ability of mice in vivo. These data indicate that HBCD leads to chondrocyte damage. In summary, this study lays the foundation for further exploration of the toxicological effects of HBCD on bone and joints.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2023.153659DOI Listing

Publication Analysis

Top Keywords

hbcd
19
toxicological effects
16
effects hbcd
16
cartilage tissue
12
hexabromocyclododecane hbcd
8
panoptosis chondrocytes
8
decreased exercise
8
exercise ability
8
ability mice
8
mice vivo
8

Similar Publications

Occurrence and distribution of brominated and fluorinated persistent organic pollutants in surface sediments focusing on industrially affected rivers.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Article Synopsis
  • The study focused on legacy persistent organic pollutants like PBDEs, HBCDs, and PFAS found in sediments from five major rivers, revealing higher contamination levels in areas with industrial activity.
  • The predominant compounds detected were decaBDE for PBDEs, γ-HBCD for HBCDs, and PFOS for PFAS, with alternative substances appearing less frequently.
  • Overall, while most ecological risk assessment values were low, PBDEs and PFOS posed significant risks at certain sites, indicating a need for ongoing monitoring to protect aquatic ecosystems.
View Article and Find Full Text PDF

Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation.

J Hazard Mater

December 2024

Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan. Electronic address:

Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism.

View Article and Find Full Text PDF

The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The goal is to recruit over 7000 caregiver-child dyads across the United States, with 25 % of the study population comprising children exposed in utero to substances to better understanding the effects of prenatal substance exposure on fetal and child development. However, barriers of mistrust for pregnant persons who are substance involved can create challenges to recruiting and retaining this population.

View Article and Find Full Text PDF

Occurrence and risk of microplastics and hexabromocyclododecane in urban drinking water systems: From source water to tap water.

Sci Total Environ

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The widespread presence of microplastics (MPs) in drinking water systems and their risk of releasing additives have caused widespread concern. However, current research on the migration and risks of MPs and additives in the complete drinking water supply chain remains inadequate. In this study, micro-Raman spectrometer was used to track the entire transport process of MPs from the water source to the tap water, with concentrations ranging from 805 to 4960 items/L, and polyethylene and Polyethylene terephthalate were dominant.

View Article and Find Full Text PDF

Highly branched cyclic dextrin supplementation and resistance training: A randomized double-blinded crossover trial examining mechanical, metabolic, and perceptual responses.

Clin Nutr ESPEN

December 2024

Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Sports Sciences and Physical Conditioning, Universidad Católica de la Santísima Concepción, Concepción, Chile. Electronic address:

Background & Aims: The aim of this study was to investigate the potential ergogenic effects of intra-session supplementation of highly branched cyclic dextrin (HBCD) on mechanical (number of repetitions completed and repetition velocity), metabolic (lactate concentration), and perceptual (gastrointestinal complaints and ratings of perceived exertion [RPE]) responses to resistance training.

Methods: This study used a randomized, double-blinded, placebo-controlled crossover study design. Thirty physically active individuals (15 men and 15 women) completed two experimental sessions that only differed in the supplement condition (placebo or HBCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!