The cerebral cortex is a pivotal structure integral to advanced brain functions within the mammalian central nervous system. DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5'-hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in the early stages profoundly alters the epigenetic regulation program, which provides unique insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2023.10.006 | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!