Ubiquitination of histone H2B on chromatin is key to gene regulation. E3 ligase Bre1 and E2 Rad6 in Saccharomyces cerevisiae associate together to catalyze mono-ubiquitination at histone H2B Prior studies identified the role of a highly dynamic C-terminal acidic tail of Rad6 indispensable for H2B mono-ubiquitination. However, the mechanistic basis for the Rad6-acidic tail role remained elusive. Using different structural and biophysical approaches, this study for the first time uncovers the direct role of Rad6-acidic tail in interaction with the Bre1 Rad6-Binding Domain (RBD) and recognition of histones surface to facilitate histone H2B mono-ubiquitination. A combination of NMR, SAXS, ITC, site-directed mutagenesis and molecular dynamics studies reveal that RBD domain of Bre1 interacts with Rad6 to stabilize the dynamics of acidic tail. This Bre1-RBD mediated stability in acidic tail of Rad6 could be one of the key factors for facilitating correct recognition of histone surface and ubiquitin-transfer at H2B. We provide biophysical evidence that Rad6-acidic tail and a positivity charged surface on histone H2B are involved in recognition of E2:Histones. Taken together, this study uncovers the mechanistic basis for the role of Rad6-acidic in Bre1-RBD mediated recognition of histone surface that ensure the histone H2B mono-ubiquitination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127717DOI Listing

Publication Analysis

Top Keywords

histone h2b
20
acidic tail
16
h2b mono-ubiquitination
12
rad6-acidic tail
12
basis role
8
saccharomyces cerevisiae
8
ligase bre1
8
mediated recognition
8
recognition histones
8
tail rad6
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!