Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices.

Cell

Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany. Electronic address:

Published: November 2023

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2023.10.003DOI Listing

Publication Analysis

Top Keywords

cytoplasmic lattices
24
proteins early
12
mammalian oocytes
8
oocytes store
8
early embryonic
8
embryonic development
8
padi6 subcortical
8
subcortical maternal
8
maternal complex
8
proteins
7

Similar Publications

Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.

View Article and Find Full Text PDF

The distinctive mechanical and structural signatures of residual force enhancement in myofibers.

Proc Natl Acad Sci U S A

December 2024

Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany.

In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when steady-state force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces.

View Article and Find Full Text PDF
Article Synopsis
  • The chapter explains how lattice light-sheet microscopy (LLSM) enables detailed tracking of microtubule growth during cell division, using a special protein marker for precision.
  • It outlines statistical methods for analyzing the complex three-dimensional data collected from this imaging technology.
  • The discussion also includes future possibilities for improving the analysis of large-scale image datasets in biological research.
View Article and Find Full Text PDF

is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway that is required for chronic infection, although the molecular details of this process remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!