Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photothermal therapy (PTT) has been extensively studied due to its promising therapeutic effects and potential for development in cancer treatments. Central to PTT is the development of photothermal agents (PTAs). This study presents a novel nanoparticle called POSS-SQ, which satisfies the necessary conditions to function as a PTA. Comprised of squaraine (SQ) and polyhedral oligomeric sesquisiloxane (POSS), POSS-SQ NPs exhibit strong near-infrared (NIR) absorption and high photothermal conversion efficiency (PCE) attributable to the intermolecular electron transfer in SQ. Furthermore, POSS when modified with polyethylene glycol (PEG) through "click" chemistry, effectively enhances cell permeability and biocompatibility of the nanoparticles. Photothermal experiments reveal that POSS-SQ NPs demonstrate concentration and laser power dependence, with a PCE of 67.2%. In vitro and in vivo experiments confirm the excellent biosafety and tumor growth inhibition potential of POSS-SQ NPs under laser irradiation, attributed to the synergistic effects of enhanced cell permeability and exceptional photothermal properties. This research highlights the possibility of obtaining PTAs with high PCE and excellent biocompatibility by combining SQ-N and POSS, offering a new approach for designing and developing more efficient PTAs to enhance better PTT outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!