A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Baicalin ameliorates renal fibrosis by upregulating CPT1α-mediated fatty acid oxidation in diabetic kidney disease. | LitMetric

Baicalin ameliorates renal fibrosis by upregulating CPT1α-mediated fatty acid oxidation in diabetic kidney disease.

Phytomedicine

Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease in Hubei, 238 Jiefang Rd, Wuhan, Hubei 430060, China. Electronic address:

Published: January 2024

Background: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). The progression of DKD is often marked by heightened renal fibrosis due to hindered fatty acid oxidation within renal tubules. Baicalin (BA), a naturally derived compound, has exhibited the potential to mitigate the advancement of DKD. Delving deeper into the precise targets and mechanisms of BA's effect on DKD is crucial.

Purpose: This study sought to elucidate the specific mechanism through which BA moderates the progression of DKD.

Methods: Renal tubular tissues from diabetic (db/db) and control (db/m) mice were subjected to mRNA sequencing to discern BA's influence on DKD. Immunohistochemical staining and Western blot were employed to assess the expression of CPT1α in DKD patients and db/db and db/m mice administered with either BA (50 mg/kg/day) or a vehicle for 12 weeks. In vitro, human proximal renal tubule cells (HK-2) were treated with 40 mM high glucose or 50 μM BA. The potential inhibitory mechanism of BA on renal fibrosis in DKD was evaluated using Oil Red O staining and oxygen consumption rate (OCR) measurements.

Results: The results demonstrated that BA notably reduced lipid accumulation and renal fibrosis in db/db mice. Moreover, mRNA sequencing pinpointed a significant downregulation of CPT1α in DKD. In vitro assays revealed that both the overexpression of CPT1α and treatment with BA exerted similar influences on mitochondrial respiration, fatty acid oxidation, and renal fibrosis levels. Given the pronounced downregulation of CPT1α in DKD patients and its substantial correlation with clinical indicators, it was evident that CPT1α could serve as a therapeutic target for BA in addressing DKD.

Conclusion: Our findings demonstrated that BA potentially enhances FAO by augmenting the expression of CPT1α, subsequently diminishing renal fibrosis in DKD. As such, CPT1α emerges as a promising therapeutic target for DKD intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2023.155162DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
24
fatty acid
12
acid oxidation
12
cpt1α dkd
12
dkd
11
renal
10
diabetic kidney
8
kidney disease
8
oxidation renal
8
db/m mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!