Signal domain adaptation network for limited-view optoacoustic tomography.

Med Image Anal

Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland. Electronic address:

Published: January 2024

Optoacoustic (OA) imaging is based on optical excitation of biological tissues with nanosecond-duration laser pulses and detection of ultrasound (US) waves generated by thermoelastic expansion following light absorption. The image quality and fidelity of OA images critically depend on the extent of tomographic coverage provided by the US detector arrays. However, full tomographic coverage is not always possible due to experimental constraints. One major challenge concerns an efficient integration between OA and pulse-echo US measurements using the same transducer array. A common approach toward the hybridization consists in using standard linear transducer arrays, which readily results in arc-type artifacts and distorted shapes in OA images due to the limited angular coverage. Deep learning methods have been proposed to mitigate limited-view artifacts in OA reconstructions by mapping artifactual to artifact-free (ground truth) images. However, acquisition of ground truth data with full angular coverage is not always possible, particularly when using handheld probes in a clinical setting. Deep learning methods operating in the image domain are then commonly based on networks trained on simulated data. This approach is yet incapable of transferring the learned features between two domains, which results in poor performance on experimental data. Here, we propose a signal domain adaptation network (SDAN) consisting of i) a domain adaptation network to reduce the domain gap between simulated and experimental signals and ii) a sides prediction network to complement the missing signals in limited-view OA datasets acquired from a human forearm by means of a handheld linear transducer array. The proposed method showed improved performance in reducing limited-view artifacts without the need for ground truth signals from full tomographic acquisitions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.103012DOI Listing

Publication Analysis

Top Keywords

domain adaptation
12
adaptation network
12
ground truth
12
signal domain
8
tomographic coverage
8
full tomographic
8
transducer array
8
linear transducer
8
angular coverage
8
deep learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!