Distinguishing between concerted, sequential and barrierless conformational changes: Folding versus allostery.

Curr Opin Struct Biol

Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel. Electronic address:

Published: December 2023

Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2023.102721DOI Listing

Publication Analysis

Top Keywords

allosteric transitions
8
distinguishing concerted
4
concerted sequential
4
sequential barrierless
4
barrierless conformational
4
conformational changes
4
changes folding
4
folding versus
4
versus allostery
4
allostery characterization
4

Similar Publications

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in , undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear.

View Article and Find Full Text PDF

Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site.

View Article and Find Full Text PDF

Human UDP-glucose dehydrogenase (hUGDH) catalyzes the oxidation of UDP-glucose into UDP-glucuronic acid, an essential substrate in the Phase II metabolism of drugs. hUGDH is a hexamer that exists in an equilibrium between an active (E) state and an inactive (E) state, with the latter being stabilized by the binding of the allosteric inhibitor UDP-xylose (UDP-Xyl). The allosteric transition between E and E is slow and can be observed as a lag in progress curves.

View Article and Find Full Text PDF

The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding.

Nat Commun

December 2024

MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China.

Hsp90, a crucial molecular chaperone, regulates diverse client proteins, impacting both normal biology and disease. Central to its function is its conformational plasticity, driven by ATPase activity and client interactions. However, comprehensive insights into Hsp90's dynamic molecular transitions remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!