Background: Nanotechnology has emerged as a transformative realm of exploration across diverse scientific domains. A particular focus lies on metal oxide nanoparticles, which boast distinctive physicochemical attributes on the nanoscale. Of note, green synthesis has emerged as a promising avenue, leveraging plant extracts as both reduction and capping agents. This approach offers environmentally friendly and cost-effective avenues for generating monodispersed nanoparticles with precise morphologies.
Methods: In this investigation, we embarked on the synthesis of Bismuth oxide nanoparticles, both in their pure form and doped with silver (Ag) and copper (Cu). This synthesis harnessed the potential of Biebersteinia multifida extract as a versatile reducing agent. To comprehensively characterize the synthesized nanoparticles, a suite of analytical techniques was employed, including energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and Raman spectroscopy.
Results: The synthesized nanoparticles underwent a rigorous assessment. Their antibacterial attributes were probed, revealing a pronounced enhancement in antibiofilm activity against Pseudomonas aeruginosa and Staphylococcus aureus bacteria upon metal nanoparticle doping. Furthermore, their potential for combating cancer was scrutinized, with the nanoparticles exhibiting selective cytotoxicity towards cancer cells, U87, compared to normal 3T3 cells. Notably, among the doped nanoparticles, Cu-doped variants demonstrated the highest potency, further underscoring their promising potential.
Conclusion: In conclusion, the present study underscores the efficacy of green synthesized Bismuth oxide nanoparticles, particularly those doped with Ag and Cu, in augmenting antibacterial efficacy, bolstering biofilm inhibition, and manifesting selective cytotoxicity against cancer cells. These findings portend a promising trajectory for these nanoparticles in the spheres of biomedicine and therapeutics. As we look ahead, a deeper elucidation of their mechanistic underpinnings and in vivo investigations are essential to fully unlock their potential for forthcoming biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2023.127325 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
Mass transfer governs the overall catalytic performance of heterogeneous catalysts considerably; however, this fundamental research has often been ignored. Here, macroporous SiO-supported Pt nanoparticle (Pt/SiO-M) and mesoporous SiO-supported Pt nanoparticle (Pt/SiO-m) catalysts were specifically fabricated by a facile thermal reduction step to engineer the resultant Pt nanoparticles showing similar physiochemical properties while possessing completely different porous microstructures exclusively originating from SiO supports. On this basis, a platform to explore the crucial mass transfer difference affecting catalytic activity is then established by systematically practicing industry-important benzene oxidation measurements.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt.
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemical Engineering, Integrated Engineering Major, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Oxygen evolution reaction (OER) is a half-reaction that occurs at the anode during water electrolysis, and owing to its slow kinetics, it is the rate-limiting step in the process. Alloying with transition metal and combining with transition metal oxide supports are effective methods for modifying the electronic structure of noble metal catalysts and improving their catalytic properties. In this study, we synthesized IrCu/CoO hybrid nanostructures by attaching IrCu alloy nanoparticles onto CoO nanosheets.
View Article and Find Full Text PDFNanoscale
January 2025
Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima 739-8527, Japan.
Highly ordered porous structured particles comprising three-way catalyst (TWC) nanoparticles have attracted attention because of their remarkable catalytic performance. However, the conditions for controlling their pore arrangement to form interconnected pore structures remain unclear. In particular, the correlation between framework thickness (distance between pores) or macroporosity and the diffusion of gaseous reactants to achieve a high catalytic performance has not been extensively discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!