The development of tissue-engineered cardiovascular implants can improve the lives of large segments of our society who suffer from cardiovascular diseases. Regenerative tissues are fabricated using a process called tissue maturation. Furthermore, it is highly challenging to produce cardiovascular regenerative implants with sufficient mechanical strength to withstand the loading conditions within the human body. Therefore, biohybrid implants for which the regenerative tissue is reinforced by standard reinforcement material (e.g. textile or 3d printed scaffold) can be an interesting solution. In silico models can significantly contribute to characterizing, designing, and optimizing biohybrid implants. The first step towards this goal is to develop a computational model for the maturation process of tissue-engineered implants. This paper focuses on the mechanical modeling of textile-reinforced tissue-engineered cardiovascular implants. First, an energy-based approach is proposed to compute the collagen evolution during the maturation process. Then, the concept of structural tensors is applied to model the anisotropic behavior of the extracellular matrix and the textile scaffold. Next, the newly developed material model is embedded into a special solid-shell finite element formulation with reduced integration. Finally, our framework is used to compute two structural problems: a pressurized shell construct and a tubular-shaped heart valve. The results show the ability of the model to predict collagen growth in response to the boundary conditions applied during the maturation process. Consequently, the model can predict the implant's mechanical response, such as the deformation and stresses of the implant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107623DOI Listing

Publication Analysis

Top Keywords

maturation process
16
mechanical modeling
8
process tissue-engineered
8
tissue-engineered implants
8
tissue-engineered cardiovascular
8
cardiovascular implants
8
biohybrid implants
8
model predict
8
implants
7
maturation
5

Similar Publications

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Acetylation modification in the regulation of macroautophagy.

Adv Biotechnol (Singap)

June 2024

Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.

Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).

View Article and Find Full Text PDF

Effects of aged garlic extract on macrophage functions: a short review of experimental evidence (Review).

Biomed Rep

March 2025

Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan.

Macrophages play crucial roles in both the innate and adaptive immune systems, contributing to the removal of pathogens and subsequent immune responses. Conversely, aberrant macrophage functions are associated with the onset and progression of various diseases, highlighting macrophages as potential therapeutic targets. Aged garlic extract (AGE) is derived from garlic that has undergone a maturation process of over 10 months in an ethanol solution and contains a variety of bioactive components which are produced in the aging process.

View Article and Find Full Text PDF

Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!