Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic‑nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115569DOI Listing

Publication Analysis

Top Keywords

nitrogen methane
12
functional pattern
8
pattern nitrogen
8
western north
8
north pacific
8
pacific ocean
8
methane cycles
8
composition dominant
8
ocean
5
higher
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!