A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microstructure-driven mechanical and electromechanical phenomena in additively manufactured nanocrystalline zinc oxide. | LitMetric

Advances in nanoscale additive manufacturing (AM) offer great opportunities to expand nanotechnologies; however, the size effects in these printed remain largely unexplored. Using bothnanomechanical and electrical experiments and molecular dynamics (MD) simulations, this study investigates additively manufactured nano-architected nanocrystalline ZnO (nc-ZnO) with ∼7 nm grains and dimensions spanning 0.25-4m. These nano-scale ceramics are fabricated through printing and subsequent burning of metal ion-containing hydrogels to produce oxide structures. Electromechanical behavior is shown to result from random ordering in the microstructure and can be modeled through a statistical treatment. A size effect in the failure behavior of AM nc-ZnO is also observed and characterized by the changes in deformation behavior and suppression of brittle failure. MD simulations provide insights to the role of grain boundaries and grain boundary plasticity on both electromechanical behavior and failure mechanisms in nc-ZnO. The frameworks developed in this paper extend to other AM nanocrystalline materials and provide quantification of microstructurally-drive limitations to precision in materials property design.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad0984DOI Listing

Publication Analysis

Top Keywords

additively manufactured
8
electromechanical behavior
8
microstructure-driven mechanical
4
mechanical electromechanical
4
electromechanical phenomena
4
phenomena additively
4
manufactured nanocrystalline
4
nanocrystalline zinc
4
zinc oxide
4
oxide advances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!