Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene families has not yet been fully characterized, so that it is unclear which members of these families are necessary for tuberization. Therefore, genome-wide identification of the sweet potato ABF/ AREB/ ABI5, SnRK2, and PYL gene families was performed, along with phylogenetic, motif, cis-regulatory element (CRE), and expression analyses. Nine ABF, eight SnRK2, and eleven PYL gene family members were identified, and there was high sequence conservation among these proteins that were revealed by phylogenetic and motif analyses. The promoter sequences of these genes had multiple CREs that were involved in hormone responses and stress responses. In silico and qRT-PCR expression analyses revealed that these genes were expressed in various tissues and that IbABF3, IbABF4, IbDPBF3, IbDPBF4, IbPYL4, IbSnRK2.1, and IbSnRK2.2 were significantly expressed during storage root development. These results are an important reference that can be used for functional validation studies to better understand how ABA signaling elicits storage root formation at the molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624305 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288481 | PLOS |
Plant Cell Environ
January 2025
College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China.
A key feature of stress responses [closely relative to the phytohormone abscisic acid (ABA)] and associated acclimation in plants is the dynamic adjustments and related optimisation of carbohydrate content between sink and source organs. The production of stomata, which consist of a pore between two adjacent guard cells, are central to plant adaptation to changing environment conditions. In this context, ABA is a core modulator of environmentally determined stomatal development.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.
View Article and Find Full Text PDFNew Phytol
January 2025
State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China.
The apoplastic pH (pH) in plants is susceptible to environmental stimuli. However, the biological implications of pH variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pH relate to plant behaviors in Arabidopsis.
View Article and Find Full Text PDFPlant Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:
Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a regulatory role in plant response to environmental stresses. Seed germination is a complex physiological process modulated by many environmental and phytohormonal cues. However, how lncRNAs and phytohormones interactively regulate the response of seed germination to salt stress remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!