Constructing Two Cu-Modified Organophosphomolybdates from a Nanocluster to a One-Dimensional Chain for Boosted Visible-Light-Driven Hydrogen Production.

Inorg Chem

College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

Published: November 2023

Photocatalytic decomposition of water to produce hydrogen H is an ideal way to solve energy and environmental problems, and the development of highly efficient polyoxometalate catalysts for photocatalytic hydrogen production has attracted wide attention. Herein, two Cu-modified Strandberg-type organophosphomolybdates were successfully synthesized, [Cu(CHN)(HO)][(CHPO)MoO]·4HO () and [Cu(phen)(HO)][Cu(phen)(HO)][(CHPO)MoO]·2HO () ([(CHP)MoO]Cu) (CHN = 2-(1H-pyrazol-3-yl)pyridine, phen = 1,10-phenanthroline). Two Strandberg-type organophosphomolybdates can be used for visible-light-driven hydrogen production. Also, compound exhibits an H production rate of 6399 μmol g h after 8 h light exposure in the presence of photosensitization agent [Ir(dtbbpy)(ppy)][PF] and TEOA. In addition, cyclic tests showed that compound could be recycled four times without a significant reduction in catalytic performance. This work offers fresh insight into the development of novel polyoxometalates for efficient hydrogen evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02274DOI Listing

Publication Analysis

Top Keywords

hydrogen production
12
visible-light-driven hydrogen
8
strandberg-type organophosphomolybdates
8
hydrogen
5
constructing cu-modified
4
cu-modified organophosphomolybdates
4
organophosphomolybdates nanocluster
4
nanocluster one-dimensional
4
one-dimensional chain
4
chain boosted
4

Similar Publications

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.

ACS Phys Chem Au

January 2025

University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.

The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.

View Article and Find Full Text PDF

Transitional analysis for multi-objective operative improvement of reformate quality and hydrogen production from a naphtha catalytic reforming process.

Heliyon

January 2025

Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacán, C.P. 07730, Ciudad de México, Mexico.

The hydrogen produced ( ) in the Catalytic Naphtha Reforming (CNR) is important in quantity and quality, for the feedback of the process and for supplying the hydrotreatment processes in current refineries. In this work it is presented a study by process simulation using ® for finding operative transitional modes that simultaneously improve quality of the reformate and hydrogen production of the CNR. The operative conditions that were studied correspond to the recirculation ratio of hydrogen/hydrocarbon ( ), with values between 2 and 6, and the temperature (), between 450 and 525 °C, in order to determining the best operative transitional route from the initial operative state to a local improved state, applying the method of superposition of response surfaces and criteria assessment of improvement in quality and quantity of hydrogen produced.

View Article and Find Full Text PDF

Catalytic reduction of NAD(P) to NAD(P)H.

Chem Commun (Camb)

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.

1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!