Surface electromyography (sEMG) is currently the primary method for user control of prosthetic manipulation. Its inherent limitations of low signal-to-noise ratio, limited specificity and susceptibility to noise, however, hinder successful implementation. Ultrasound provides a possible alternative, but current systems with medical probes are expense, bulky and non-wearable. This work proposes an innovative prosthetic control strategy based on a piezoelectric micromachined ultrasound transducer (PMUT) hardware system. Two PMUT-based probes were developed, comprising a 23×26 PMUT array and encapsulated in Ecoflex material. These compact and wearable probes represent a significant improvement over traditional ultrasound probes as they weigh only 1.8 grams and eliminate the need for ultrasound gel. A preliminary test of the probes was performed in non-disabled subjects performing 12 different hand gestures. The two probes were placed perpendicular to the flexor digitorum superficialis and brachioradialis muscles, respectively, to transmit/receive pulse-echo signals reflecting muscle activities. Hand gesture was correctly predicted 96% of the time with only these two probes. The adoption of the PMUT-based strategy greatly reduced the required number of channels, amount of processing circuit and subsequent analysis. The probes show promise for making prosthesis control more practical and economical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2023.3329826 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!