While the distance dependence of metal-enhanced fluorescence has been extensively studied for composite systems comprising fluorophores and metal nanoparticles, the corresponding distance dependence of triplet-triplet annihilation upconversion (TTA-UC) systems remains unexplored. Herein, we investigated the influence of the spatial distance between Ag nanoprisms (AgPRs) and TTA-UC thin films consisting of a palladium octaethylporphyrin (PdOEP) sensitizer and a 9,10-diphenylanthracene (DPA) emitter, aiming at enhancing the upconverted (UC) emission as efficiently as possible. Results indicated that the optimal distance for the examined system was significantly longer (12.6 nm) than those of typical metal-enhanced fluorescence systems (about 2 nm). We demonstrated that the UC emission enhancement factor can be expressed as a product including factors of the PdOEP photoexcitation rate, triplet-triplet energy transfer (TTET) efficiency from PdOEP to DPA, triplet excited DPA lifetime, and fluorescence efficiency of singlet excited DPA. We discovered that the AgPRs play a beneficial role in enhancing the PdOEP photoexcitation, whereas they exert detrimental effects on the other three factors. Among these three factors, quenching contributions by the decrease of the triplet excited DPA lifetime and DPA fluorescence efficiency were significant, making these the primary and secondary factors, respectively, for the UC emission quenching, particularly at short distances. These results demonstrate that the characteristic distance dependence of the UC emission enhancement is determined by the competing effects of beneficial PdOEP photoexcitation enhancement and the detrimental localized surface plasmon (and/or AgPR)-induced nonradiative decay of the triplet- and singlet excited DPA molecules. The findings offer valuable guidelines for the design of high-performance plasmonic TTA-UC systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c02352DOI Listing

Publication Analysis

Top Keywords

excited dpa
16
distance dependence
12
pdoep photoexcitation
12
thin films
8
design high-performance
8
high-performance plasmonic
8
triplet-triplet annihilation
8
annihilation upconversion
8
metal-enhanced fluorescence
8
tta-uc systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!