Molecular Characterization of Neurogranin (NRGN) Gene from Red‑Bellied Pacu (Piaractus brachypomus).

Mol Neurobiol

Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia.

Published: May 2024

Neurogranin (NRGN) is a small brain protein expressed in various telencephalic areas and plays an essential role in synaptic plasticity by regulating the availability of calmodulin (CaM). The study aims to characterize the neurogranin gene in Colombian native fish, red-bellied pacu, Piaractus brachypomus, its basal tissue expression and differential expression in brain injury and sublethal toxicity by organophosphates. NRGN gene contains an open reading frame of 183 nucleotides encoding for 60 amino acids. Bioinformatics analysis showed an IQ motif necessary in the interaction with CaM. NRGN mRNA was detected in tissues with higher expression in brain, gills, and head kidney. In brain regions, NRGN showed high expression in the telencephalon (TE) and olfactory bulb (OB). In the sublethal toxicity experiment, NRGN mRNA was upregulated in individuals under organophosphate exposure in the OB and optic chiasm (OC). In brain injury experiment, NRGN showed upregulation at 14 days in OC and at 24 h and 7 days in TE. These findings demonstrate the differential expression of NRGN under different experimental conditions which make it a candidate for a biomarker in the brain of P. brachypomus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043121PMC
http://dx.doi.org/10.1007/s12035-023-03700-5DOI Listing

Publication Analysis

Top Keywords

nrgn
8
neurogranin nrgn
8
nrgn gene
8
pacu piaractus
8
piaractus brachypomus
8
differential expression
8
expression brain
8
brain injury
8
sublethal toxicity
8
nrgn mrna
8

Similar Publications

Inflammatory Response of THP1 and U937 Cells: The RNAseq Approach.

Cells

December 2024

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

THP1 and U937 are monocytic cell lines that are common bioassays to reflect monocyte and macrophage activities in inflammation research. However, THP-1 is a human monocytic leukemia cell line, and U937 originates from pleural effusion of histiocytic lymphoma; thus, even though they serve as bioassay in inflammation research, their response to agonists is not identical. Consequently, there has yet to be a consensus about the panel of strongly regulated genes in THP1 and U937 cells representing the inflammatory response to LPS and IFNG.

View Article and Find Full Text PDF

Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model.

Biomaterials

May 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China. Electronic address:

Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model.

View Article and Find Full Text PDF

Background: The effect of varying brain ventricular volume on the cerebrospinal fluid (CSF) proteome has been discussed as possible confounding factors in comparative protein level analyses. However, the relationship between CSF volume and protein levels remains largely unexplored. Moreover, the few existing studies provide conflicting findings, indicating the need for further research.

View Article and Find Full Text PDF

Background: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored.

View Article and Find Full Text PDF

Background: This study aims to identify circulating biomarkers by using proteomic analysis associated with sac shrinkage or expansion in patients undergoing endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAAs).

Methods: Plasma samples were analysed from 32 patients treated with EVAR between 10/2009 and 10/2020. Patients were divided into two groups based on postoperative sac behaviour: sac shrinkage (≥5 mm reduction) and no shrinkage (stabilisation or expansion).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!