Effect of gut microbiome on serotonin metabolism: a personalized treatment approach.

Naunyn Schmiedebergs Arch Pharmacol

College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.

Published: May 2024

Several factors including diet, exercise, and medications influence the makeup of the resilient but adaptable gut microbiome. Bacteria in the gut have a significant role in the homeostasis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine, involved in mood and behavior. The goal of the current work is to review the effect of the gut microbiome on serotonin metabolism, and how it can potentially contribute to the development of a personalized treatment approach for depression and anxiety. Bacterial strains provide innovative therapeutic targets that can be used for disorders, such as depression, that involve dysregulation of serotonin. Advances in bacterial genomic sequencing have increased the accessibility and affordability of microbiome testing, which unlocks a new targeted pathway to modulate serotonin metabolism by targeting the gut-brain axis. Microbiome testing can facilitate the recommendation of strain-specific probiotic supplements based on patient-specific microbial profiles. Several studies have shown that supplementation with probiotics containing specific species of bacteria, such as Bifidobacterium and Lactobacillus, can improve symptoms of depression. Further research is needed to improve the process and interpretation of microbiome testing and how to successfully incorporate testing results into guiding clinical decision-making. This targeted approach centered around the gut-brain axis can provide a novel way to personalize therapy for mental health disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-023-02762-5DOI Listing

Publication Analysis

Top Keywords

gut microbiome
12
serotonin metabolism
12
microbiome testing
12
microbiome serotonin
8
personalized treatment
8
treatment approach
8
gut-brain axis
8
serotonin
5
microbiome
5
gut
4

Similar Publications

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.

View Article and Find Full Text PDF

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!