Molecular docking, molecular dynamics and binding free energy based identification of novel potential multitarget inhibitors of Nipah virus.

J Biomol Struct Dyn

Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.

Published: December 2024

Nipah virus (NiV) is one of the most common viral diseases affecting the brain and nervous system of the body. To date, there is no significant antiviral drug specifically designed to inhibit NiV. In the last ten years, there has been a significant increase in interest in multitarget drug development. Therefore, the reported work focuses on designing a multitarget inhibitor for NiV. Among the twelve designed compounds, five exhibited better drug-likeness and ADMET properties, hence being selected for further analysis. In a molecular docking study, these compounds possessed better binding affinity as compared to Favipiravir. The RMSD of these compounds was ≤2Å and the number of H-bonds signified the better stability of the complexes formed. The ΔG of C4, C6 and C7 was found to be comparatively higher than the other screened compounds, revealing their greater ability to bind efficiently with NiV-G, NiV-F and NiV-N receptors, respectively. Therefore, based on molecular docking, molecular dynamics, and MM/PBSA analysis, these compounds can act as potential inhibitors of multitargets of NiV.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2277852DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
docking molecular
8
molecular dynamics
8
nipah virus
8
molecular
5
compounds
5
dynamics binding
4
binding free
4
free energy
4
energy based
4

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is one of the most common systemic autoimmune inflammatory diseases, with a progressive etiology that results in serious complications and a higher chance of early death. Visfatin, an adipokine, is correlated with disease pathologic features and becomes a key biomarker and therapeutic target for RA. This study aimed to evaluate the anti-arthritic activity of metformin (an antidiabetic drug with anti-inflammatory activities) and methotrexate (the first choice for disease-modifying antirheumatic drugs in RA, with diverse adverse effects) in complete Freund's adjuvant (CFA)-induced arthritis in female rats.

View Article and Find Full Text PDF

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!