Gut microbes play a pivotal role in host physiology by producing beneficial or detrimental metabolites. Gut bacteria metabolize dietary choline and L-carnitine to trimethylamine (TMA) which is then converted to trimethylamine-N-oxide (TMAO). An elevated circulating TMAO is associated with diabetes, obesity, cardiovascular disease, and cancer in humans. In the present study, we investigated the effect of dietary blueberries and strawberries at a nutritional dosage on TMA/TMAO production and the possible role of gut microbes. Blueberry cohort mice received a control (C) or freeze-dried blueberry supplemented (CB) diet for 12 weeks and subgroups received an antibiotics cocktail (CA and CBA). Strawberry cohort mice received a control (N) or strawberry-supplemented (NS) diet and subgroups received antibiotics (NA and NSA). Metabolic parameters, choline, TMA, and TMAO were assessed in addition to microbial profiling and characterization of berry powders. Blueberry supplementation (equivalent to 1.5 human servings) reduced circulating TMAO in CB versus C mice (~48%) without changing choline or TMA. This effect was not mediated through alterations in metabolic parameters. Dietary strawberries did not reduce choline, TMA, or TMAO. Depleting gut microbes with antibiotics in these cohorts drastically reduced TMA and TMAO to not-quantified levels. Further, dietary blueberries increased the abundance of bacterial taxa that are negatively associated with circulating TMA/TMAO suggesting the role of gut microbes. Our phenolic profiling indicates that this effect could be due to chlorogenic acid and increased phenolic contents in blueberries. Our study provides evidence for considering dietary blueberries to reduce TMAO and prevent TMAO-induced complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014767PMC
http://dx.doi.org/10.1002/biof.2014DOI Listing

Publication Analysis

Top Keywords

gut microbes
20
dietary blueberries
12
choline tma
12
tma tmao
12
circulating tmao
8
role gut
8
cohort mice
8
mice received
8
received control
8
subgroups received
8

Similar Publications

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Recent studies suggest the role of gut microbes in bile acid metabolism in the development and progression of colorectal cancer. However, the surveys of the association between fecal bile acid concentrations and colorectal cancer (CRC) have been inconsistent. We searched online to identify relevant cross-sectional and case-control studies published online in the major English language databases (Medline, Embase, Web of Science, AMED, and CINAHL) up to January 1, 2024.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!