The extension of the highly optimized local natural orbital (LNO) coupled cluster (CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method is presented for high-spin open-shell molecules based on restricted open-shell references. The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD(T) variant are adopted, including the iteration- and redundancy-free second-order Møller-Plesset and (T) formulations as well as the integral-direct, memory- and disk use-economic, and OpenMP-parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD(T) method approaches that of its closed-shell parent method due to the application of restricted orbital sets for demanding integral transformations and a novel approximation for higher-order long-range spin-polarization effects. The accuracy of open-shell LNO-CCSD(T) is extensively tested for radicals and reactions thereof, ionization processes, as well as spin-state splittings, and transition-metal compounds. At the size range where the canonical CCSD(T) reference is accessible (up to 20-30 atoms), the average open-shell LNO-CCSD(T) correlation energies are found to be 99.9 to 99.95% accurate, which translates into average absolute deviations of a few tenths of kcal/mol in the investigated energy differences already with the default settings. For more extensive molecules, the local errors may grow, but they can be estimated and decreased via affordable systematic convergence studies. This enables the accurate modeling of large systems with complex electronic structures, as illustrated on open-shell organic radicals and transition-metal complexes of up to 179 atoms as well as on challenging biochemical systems, including up to 601 atoms and 11,000 basis functions. While the protein models involve difficulties for local approximations, such as the spin states of a bounded iron ion or an extremely delocalized singly occupied orbital, the corresponding single-node LNO-CCSD(T) computations were feasible in a matter of days with 10s to 100 GB of memory use. Therefore, the new LNO-CCSD(T) implementation enables highly accurate computations for open-shell systems of unprecedented size and complexity with widely accessible hardware.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687875 | PMC |
http://dx.doi.org/10.1021/acs.jctc.3c00881 | DOI Listing |
Inorg Chem
January 2025
Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China.
The bipyridyl tantalum complex (2,6-PrCHO)Ta(bipy) () is synthesized by the reaction of (2,6-PrCHO)TaCl () and 2,2'-bipyridine in the presence of excess potassium graphite (KC). Complex coordinates readily with pyridine and 4-(dimethylamino)pyridine (dmap) to form Lewis base adducts (2,6-PrCHO)Ta(bipy)(L) (L = py (), dmap ()), and it exhibits rich redox reactivity toward small molecules: (a) single electron transfer (SET) occurs upon exposure of to phenyl sulfide or selenide dimer, giving the open-shell, bipy-centered radical complexes (2,6-PrCHO)Ta(bipy)(PhE) (E = S (), Se ()). (b) Regioselective C-C σ-bond formation via radical coupling is observed in the SET reaction of and aldehydes, ketones, or imines to furnish insertion products -, namely, sterically more crowded benzophenone, acetophenone, 2,6-dichlorobenzaldehyde, and benzophenone imine couple with C6 or C6' of bipy in , respectively, whereas sterically less hindered benzaldehyde, cyclohexanone, and benzylideneaniline couple with C2 or C2' of bipy, respectively.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
Spectra of the weakly bound H2O-O2 dimer are studied in the region of the H2O ν2 band using a tunable quantum cascade laser to probe a pulsed supersonic slit jet expansion. These are the first gas-phase infrared spectra of H2O-O2 and among only a few such results for O2-containing complexes. Almost 100 infrared lines are assigned based on the ground state combination differences from the microwave spectrum of H2O-O2.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, WB, India.
In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia.
A search for switchable molecules has afforded a family of cobalt complexes featuring derivatives of 2-aminophenol: 4,6-di--butyl aminophenol (HL) and 2-anilino-4,6-di--butyl aminophenol (HL). The heteroleptic cobalt complexes incorporate a Metpa ligand (tpa = tris(2-pyridylmethyl)amine; = 0-3), which involves the methylation of the 6-position of the pyridine ring). Eight members of this family have been synthesized and characterized: [Co(HL)(tpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(tpa)] (BPh)(ClO) (), [Co(L)(tpa)](BPh)(ClO) () and [Co(HL)(Metpa)](BPh) (), where the aminophenol-derived ligands are monoanionic in either the open shell radical iminosemiquinonate (L) or the closed shell protonated aminophenolate (HL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!