Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37634 | DOI Listing |
BMJ Case Rep
January 2025
Department of Trauma and Orthopaedics, Royal Free London NHS Foundation Trust, London, UK.
Ganglion cysts are commonly found in areas of constant mechanical stress such as the joints and tendons of the wrist or hand as well as the anterior aspect of the ankle. In the knee, parameniscal cysts are often encountered secondary to meniscal tears or articular degeneration. Intra-articular ganglion cysts are uncommon and often arise from the cruciate ligaments and are found in the intercondylar notch.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China.
GRP78/BiP, a stress-induced protein and autoantigen in rheumatoid arthritis (RA), exhibits different expressions in various biological fluids and tissues, including blood, synovial fluid (SF), and synovium, all of which are pertinent to the disease activity and progression of RA; however, there is a scarcity of data linking both intracellular and extracellular GRP78/Bip to disease activity and progression of RA. This study was undertaken to investigate the differential expression of GRP78/Bip in blood, SF, and synovium, and to determine their association with disease activity and progression of RA. Patients with RA, osteoarthritis (OA), and traumatic meniscal injury (TMI) without radiographic OA were consecutively recruited for the study.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
The Third Orthopedic Department, the First Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang, 150001, P. R. China.
Objective: To measure and analyze the relationships among the posterior tibial slope (PTS), meniscal slope (MS), and meniscus posterior horn thickness (MPHT) of the medial and lateral tibial plateau in healthy people and patients with anteromedial osteoarthritis (AMOA) in Heilongjiang province, so as to provide reference basis for appropriate tibial osteotomy and prosthesis placement angles in knee joint surgeries.
Methods: A retrospective collection of imaging data from knee joint MRI examinations conducted prior to AMOA for various reasons was performed. A total of 103 healthy individuals (healthy group) and 30 AMOA patients (AMOA group) were included.
Am J Sports Med
January 2025
Inova Sports Medicine, Fairfax, Virginia, USA.
Background: Asymmetric landing kinetics 6 months after anterior cruciate ligament reconstruction (ACLR) are associated with higher risk of second anterior cruciate ligament injury. Little is known about landing kinetics after ACLR with an all-soft tissue quadriceps tendon (QT) autograft despite its increasingly common use in young, active patients.
Purpose/hypothesis: The purpose of this study was to compare landing kinetics during a bilateral drop vertical jump (DVJ) 6 months after ACLR in participants who had undergone primary ACLR with a QT or bone-patellar tendon-bone (BTB) autograft.
Am J Sports Med
January 2025
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!