Objectives: Cerebral blood flow (CBF) is an important index for measuring brain function. Studies have shown that regional CBF changes inconsistently in mild cognitive impairment (MCI). Arterial spin labeling (ASL) is widely used in the study of CBF in patients with MCI. However, alterations in CBF connectivity in these patients remain poorly understood.

Methods: In this study, 3D pseudo-continuous arterial spin labeling (3D-pCASL) technology was used to investigate the changes in regional CBF and CBF connectivity between 32 MCI patients and 32 healthy controls. The normalized CBF was used to reduce inter-subject variations. Both group comparisons in the CBF and correlations between CBF alterations and cognitive scores were assessed. CBF connectivity of brain regions with regional CBF differences was also compared between groups.

Results: We found that compared with that in controls, the CBF was significantly reduced in the left superior parietal gyrus in MCI patients, whereas it was increased in the left precentral gyrus, right superior temporal gyrus, right putamen, and left supplementary motor area. In patients with MCI, significant correlations were identified between CBF and neuropsychological scales. Importantly, MCI patients exhibited CBF disconnections between the left supplementary motor area and the left superior parietal gyrus.

Conclusion: This study found that there are not only changes in regional CBF but also in CBF connectivity patterns in MCI patients compared with controls. These observations may provide a novel explanation for the neural mechanism underlying the pathophysiology in patients with Alzheimer's disease and MCI.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115672050241163231017073139DOI Listing

Publication Analysis

Top Keywords

cbf
16
regional cbf
16
cbf connectivity
16
mci patients
16
arterial spin
12
spin labeling
12
cerebral blood
8
blood flow
8
connectivity patterns
8
mild cognitive
8

Similar Publications

The alteration of neurovascular coupling (NVC), where acute localized blood flow increases following neural activity, plays a key role in several neurovascular processes including aging and neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting state (RS) fMRI metrics.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).

View Article and Find Full Text PDF

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.

Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.

View Article and Find Full Text PDF

A Method for Imaging the Ischemic Penumbra with MRI using IVIM.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.

Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!