Glycerosomes: Novel Nano-Vesicles for Efficient Delivery of Therapeutics.

Recent Adv Drug Deliv Formul

Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, Haryana, 123401, India.

Published: December 2023

Background: The topical drug delivery system has gained more attention in recent years as compared to oral and parenteral drug delivery. However, owing to the barrier function of the skin's topmost layer, only a few drug molecules can be administered by this route. Therefore, encapsulating the drugs in glycerosomes is one potential solution to this problem. Glycerosomes are vesicular drug delivery systems primarily made up of large concentrations of glycerol, phospholipid, water, and other active ingredients.

Objective: The main aim of this review is to summarize the most recent information on the encapsulated vesicular system used in cosmetic preparations, specifically glycerosomes made from both synthetic and naturally occurring plant bioactive substances.

Purpose: Glycerosomes offer many benefits, including increased efficacy, better stability, improve absorption, drug targeting at specific sites, and delivering the same at a predetermined rate.

Method: The mechanism behind the penetration of glycerosomes is the hydration and lipid fluidization of skin, fabricated by glycerol.

Result: Numerous methods have been reported for the formulation of glycerosomes, including the thin film hydration method, reverse-phase evaporation, solvent spherule, detergent removal method, and so on.

Conclusion: Researchers are currently investigating the potential of glycerosomes as nanocarriers for natural bioactive and synthetic drugs. This review describes the structure of glycerosomes, preparation techniques, applications, distinctions from liposomes, and benefits of glycerosomes.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0126673878245185230919101148DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
glycerosomes
10
drug
5
glycerosomes novel
4
novel nano-vesicles
4
nano-vesicles efficient
4
delivery
4
efficient delivery
4
delivery therapeutics
4
therapeutics background
4

Similar Publications

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies.

View Article and Find Full Text PDF

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

Gene therapy targeting ischemic heart disease is a promising therapeutic avenue, but it is mostly restricted to viral-based delivery approaches which are limited due to off-target immunological responses. Focused ultrasound presents a non-viral, image-guided technique in which circulating intravascular microbubble contrast agents can reversibly enhance vascular permeability and gene penetration. Here, we explore the influence of flow rate on the microbubble-assisted delivery of miR-126, a potent pro-angiogenic biologic, using a custom acoustically coupled pressurized mesenteric artery model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!