Background & Aims: Liver paracrine signaling from liver sinusoid endothelial cells to hepatocytes in response to mechanical stimuli is crucial in highly coordinated liver regeneration. Interstitial flow through the fenestrated endothelium inside the space of Disse potentiates the role of direct exposure of hepatocytes to fluid flow in the immediate regenerative responses after partial hepatectomy, but the underlying mechanisms remain unclear.
Methods: Mouse liver perfusion was used to identify the effects of interstitial flow on hepatocyte proliferation . Isolated hepatocytes were further exposed to varied shear stresses directly . Knockdown and/or inhibition of mechanosensitive proteins were used to unravel the signaling pathways responsible for cell proliferation.
Results: An increased interstitial flow was visualized and hepatocytes' regenerative response was demonstrated experimentally by perfusion of mouse livers. measurements also showed that fluid flow initiated hepatocyte proliferation in a duration- and amplitude-dependent manner. Mechanistically, flow enhanced β1 integrin expression and nuclear translocation of YAP (yes-associated protein), via the Hippo pathway, to stimulate hepatocytes to re-enter the cell cycle.
Conclusions: Hepatocyte proliferation was initiated after direct exposure to interstitial flow or shear stress , which provides new insights into the contributions of mechanical forces to liver regeneration.
Impact And Implications: By using both liver perfusion and flow exposure tests, we identified the roles of interstitial flow in the space of Disse in stimulating hepatocytes to re-enter the cell cycle. We found an increase in shear flow-induced hepatocyte proliferation via β1 integrin-YAP mechanotransductive pathways. This serves as a useful model to potentiate hepatocyte expansion using mechanical forces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618550 | PMC |
http://dx.doi.org/10.1016/j.jhepr.2023.100905 | DOI Listing |
Hepatol Commun
February 2025
Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.
View Article and Find Full Text PDFBiomater Transl
November 2024
Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hubei Province, China.
J Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Transl Oncol
January 2025
Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:
Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.
View Article and Find Full Text PDFMol Cell
January 2025
Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:
Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!