The improvement in the overall efficiency of thin-film composite (TFC) reverse osmosis (RO) membranes is limited by their low permeability and sensitivity to degradation by chlorine. In the present study, polypiperazine (PIP), the commonly used amine monomer in preparing commercial TFC nanofiltration (NF) membranes, was used to regulate the -phenylenediamine (MPD) based interfacial polymerization (IP) process. The results showed that addition of PIP optimized the micro-structure and surface properties of the polyamide (PA) layer. When the MPD and PIP mass ratio was 1 : 1, the TFC membrane exhibited 70% flux enhancement compared to pure MPD-based TFC membranes. Besides, the TFC membrane exhibited better chlorine-resistant performance since the NaCl rejection declined to just 3.8% while it was 11.3% for TFC membranes after immersion in 500 ppm NaClO solution for 48 h. Such improvement can be attributed to the increased number of unreacted amine groups and the thickness of the PA layer that PIP brought, which provided a sacrificial protective layer to consume the active chlorine, and thus maintain the integrity of the inner rejection layer. In all, the novelty and purpose of the present work is to find a more simple and scalable method to fabricate high-performance TFC RO membranes by using commonly, cheaply and frequently used materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618943 | PMC |
http://dx.doi.org/10.1039/d3ra06015b | DOI Listing |
Membranes (Basel)
January 2025
Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada.
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFWater Res
December 2024
Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:
Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!