This study evaluated the performance of TiO-ZnO/biochar as activator of persulfate (PS) for degradation of furfural. After the successful synthesis of the catalyst, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) methods were used to investigate the properties of TiO-ZnO/biochar. The findings of this research suggests that under optimal conditions (pH = 3, catalyst dosage = 1 g/L, persulfate concentration = 1.2 mM, and furfural concentration = 10 mg/L), the PS/Catalysts/UV system can remove 96 % of furfural within 15 min. Under ideal conditions, the experimental results fit well with the first-order kinetic model (R > 0.95), and the rate constant (K) was derived as 0.195 min. The quenching experiments provided further insights that confirmed the participation of SO° and OH° radicals in the degradation process. Nevertheless, the evidence strongly supports the idea that SO° plays a more prominent and dominant role as the primary radical species responsible for furfural degradation. Based on the obtained results, it can be concluded that the PS/Catalysts/UV system has an appropriate ability to remove furfural from aqueous solutions, which suggests promising perspectives for its practical application in pollutant treatment scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618828 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21421 | DOI Listing |
Int J Med Mushrooms
December 2024
Nano Technology Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai District, Thailand; aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand.
This study aimed to identify antibacterial compounds from the broth extract of Fomitopsis meliae (MSUCC009). From small-scale fermentation, the broth extract of F. meliae showed antibacterial activity.
View Article and Find Full Text PDFFoods
December 2024
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
brine is a special flavored food produced by the natural fermentation of lees. To clarify fermentation time on its quality, this study integrated flavoromics analysis, macro-genomics, and polypeptide omics to analyze the volatile flavor components, microbial species, and flavor peptide distributions of four groups of samples (XZ-1Y, XZ-2Y, XZ-3Y, and XZ-4Y) fermented for 1-4 years. The results showed that the samples fermented for 1 year had the highest contents of umami amino acids and umami peptides, and the samples fermented for 4 years had the highest contents of organic acids and fruity components.
View Article and Find Full Text PDFSci Rep
November 2024
Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland.
The efficient utilization of lignocellulosic hydrolysates in bioprocesses is impeded by their complex composition and the presence of toxic compounds, such as furan aldehydes, formed during lignocellulose pretreatment. Biological detoxification of these furan aldehydes offers a promising solution to enhance the utilization of lignocellulosic hydrolysates. Acinetobacter baylyi ADP1 is known to metabolize furan aldehydes, yet the complete spectrum of reaction products and dynamics remains unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China. Electronic address:
Furfural acetone (FAc) is widely used as an additive by the food industry, as well as an intermediate in several fine chemical industries. Its nematicidal activity against the free-living model organism Caenorhabditis elegans and the parasitic nematode Meloidogyne incognita are well known, but its molecular mechanism of action remains unclear. To deep this subject, we performed 48-h lethal tests on eight nematode species, encompassing free-living, plant-parasitic, and animal-parasitic nematodes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
Furfural is a renewable platform compound that can be derived from lignocellulosic biomass. The highly functionalized molecular structure of furfural enables us to prepare a variety of high value-added chemicals, which will help realize biomass high-value utilization, and alleviate energy and environmental problems. This paper reviews the research progress on furfural production and upgrading to C5 chemicals from the catalyst perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!